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ABSTRACT
It is widely known that males and females typically possess different
sound characteristics when singing, such as timbre and pitch, but it
has never been explored whether these gender-based characteristics
lead to a performance disparity in singing voice transcription (SVT),
whose target includes pitch. Such a disparity could cause fairness
issues and severely affect the user experience of downstream SVT
applications. Motivated by this, we first demonstrate the female su-
periority of SVT systems, which is observed across different models
and datasets. We find that different pitch distributions, rather than
gender data imbalance, contribute to this disparity. To address this
issue, we propose using an attribute predictor to predict gender
labels and adversarially training the SVT system to enforce the
gender-invariance of acoustic representations. Leveraging the prior
knowledge that pitch distributions may contribute to the gender
bias, we propose conditionally aligning acoustic representations
between demographic groups by feeding note events to the at-
tribute predictor. Empirical experiments on multiple benchmark
SVT datasets show that our method significantly reduces gender
bias (up to more than 50%) with negligible degradation of overall
SVT performance, on both in-domain and out-of-domain singing
data, thus offering a better fairness-utility trade-off.

CCS CONCEPTS
• Applied computing→ Sound and music computing; • Infor-
mation systems → Music retrieval; Speech / audio search; • Social
and professional topics → Gender; • Networks → Network
reliability.
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1 INTRODUCTION
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Figure 1: Pitch distributions of various singing voice tran-
scription datasets.

Singing is a rich audio signal that consists of information from
two aspects: textual and musical. The textual modality pertains to
the lyrics, while the musical modality encompasses note events.
Automatic lyric transcription (ALT) can be used to retrieve lyri-
cal/textual data, as evidenced by prior literature [7–9, 17, 18, 23,
50, 74]. On the other hand, singing voice transcription (SVT) is
utilized to retrieve note events, which include onsets, offsets, and
pitches [15, 24, 29, 33, 42, 67, 68]. Transcribed information can en-
able the development of singing voice synthesis [38, 55] and aid
in education [26, 46, 72] and therapy [60]. It is important to note
that males and females have distinct sound characteristics in their
singing voices [35], e.g. timbre. Additionally, compared to lyrics,
the note events tend to be more subject to explicit gender-related
biases, particularly for pitch, as shown in prior literature [52, 58]
that males tend to have lower average pitch than females. This
is also consistent with our analysis of four SVT datasets, namely
N20EMv2 [24], MIR-ST500 [67], ISMIR2014 [47], and M4Singer [75].
As shown in Fig. 1, we observe that the pitch range of females is
generally higher than that of males across these four SVT datasets.
Besides, the proportion of males and females for each pitch value
is also different. Consequently, a critical fairness question arises:
since SVT systems target pitches, will the performance of these
systems favor one gender over the other? Before we delve into
this question, it is imperative to elucidate why this question holds
substantial significance.

The rapid progress in machine learning techniques has facilitated
their successful integration into various downstream applications,
streamlining decision-making processes and reducing the need for
repeated human efforts. However, the presence of bias in machine
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learning systems can lead to the discriminatory treatment of cer-
tain groups with sensitive attributes such as gender, age, and race,
resulting in unfair decisions. Moreover, general usage of biased ma-
chine learning systems can reinforce the stereotypes and exclude
certain groups from the opportunities. This phenomenon is not
only limited to traditional decision-making scenarios such as loan
applications, hiring, legal proceedings, and policy-making [73], but
also frequently appears in recent deep learning applications, in-
cluding visual recognition [56, 62, 69], natural language processing
[11, 25], speech processing and recognition [5, 10, 13, 22, 37, 54, 66],
recommendation systems [36, 59], and generative models [6, 14].
Consequently, the issue of fairness has gained prominence in the
machine learning community due to its pervasive nature and po-
tential societal consequences. Returning to our SVT task, the un-
fairness of systems could directly lead to user inconvenience and
negatively impact their experience. Applying biased SVT systems
to downstream applications could cause more fairness issues. We
can consider an automatic sight-singing exercise [72], where an
SVT system could serve as an intermediate stage to transcribe the
singing voice into musical notes. However, if a gender-biased SVT
system is utilized, it could result in an unsatisfying user experience
for certain groups, as well as reinforce gender stereotypes, which
would be unfair to individuals of different genders.

In this study, we elucidate the fairness issue in the field of SVT.
Our investigation demonstrates that SVT systems tend to perform
better on females compared to males, raising questions about their
fairness. Then, we assume that this gender bias is attributable to the
differences of singing voices, especially in terms of pitch distribu-
tions, in different demographic groups. We utilize self-supervised-
learning (SSL)-based SVT systems [24], which represent the current
state-of-the-art in this field, to develop a bias mitigation approach.
In contrast to previous research, which normally focuses on the in-
domain fairness, we also pay attention to the out-of-domain fairness
as user data is sometimes sampled from out-of-domain distribution.
To implement this, our approach adopts the adversarial learning
framework to “unlearn” gender-related information in the acoustic
representations. Considering the effects of pitch distributions, we
propose a note-conditional attribute predictor to conditionally align
the representations between female and male groups by condition-
ing on note events. Empirical results from various SVT datasets
confirm the effectiveness of our approach in mitigating gender bias.
Our contributions are summarized as below:

• We provide evidence and analysis of the prevalence and
source of gender bias in SVT systems. To the best of our
knowledge, this is the first attempt at fairness in singing-
centric deep learning.

• We first introduce a note-conditioned adversarial learning
approach to achieve fair representation learning in audio
modality, resulting in a significant reduction in the perfor-
mance gap between the two gender groups on various bench-
mark SVT datasets while maintaining a good fairness-utility
trade-off. Our method is effective in reducing biases on both
in-domain and out-of-domain data.

• We demonstrate the superiority of our note-conditioned ad-
versarial learning approach through comparisons with base-
line adversarial learning and domain-independent training.

2 RELATEDWORK
2.1 Singing Voice Transcription
Singing voice transcription (SVT) involves various sub-tasks, includ-
ing pitch estimation and onset/offset detection. Earlier approaches
[42, 43, 49, 71] typically relied on statistical models, such as Bayesian
models and Hidden Markov Models (HMM), to predict fundamental
frequency (F0) and note segmentation. In contrast, more recent
SVT methods [15, 29, 33] have predominantly employed deep learn-
ing techniques, such as CNN and LSTM, and have demonstrated
superior performance. Despite the promising SVT performance
achieved by these methods, the intrinsic difficulty of curating large-
scale, high-quality SVT datasets presents an obstacle to further
improvements. To address this challenge, several approaches have
been proposed. Among them, VOCANO [29] employed the Virtual
Adversarial Training (VAT) [45] to train the note segment network
on both labeled and unlabeled data. In [33], pseudo labels are ob-
tained by quantizing frame-level pitch contours for training on
unlabeled audio data. MusicYOLO [68] utilized the object detection
model YOLOX [20], which has been trained on the image domain,
to locate notes in the audio spectrogram. Recently, [24] adapted
self-supervised learning (SSL) models from the speech domain to
the SVT task, thus alleviating the label insufficiency as well as
achieving state-of-the-art SVT performance.

2.2 Fairness and Bias Mitigation
The notion of fairness in machine learning systems is defined as
the absence of any discrimination based on sensitive attributes
when making decisions. It can be categorized into group fairness
[27, 76] and individual fairness [12, 34]. The former requires that
there are no disparities among different demographic groups [76],
while the latter requires that similar individuals receive similar
predictions [34]. In our work, we focus on group fairness, which
can be assessed by criteria, including independence, separation, and
sufficiency [3, 57], along with metrics such as demographic parity,
equalized odds, equal opportunity, and accuracy parity [44, 65, 76].

Numerous approaches have been proposed to mitigate bias in
machine learning systems. Among them, adversarial learning has
emerged as a powerful technique for removing sensitive attributes
in the representations used for prediction. For instance, [40] repur-
posed the framework of generative adversarial networks (GANs)
[21] to satisfy demographic parity. [41] used an adversary to pre-
dict sensitive attributes from latent representations and a decoder
to reconstruct the input data from the latent representations and
predicted attributes in adversarial learning. Additionally, they pro-
posed different adversarial objectives according to the target group
fairness criteria. [31] proposed using a bias prediction network to
minimize mutual information between latent representations and
bias through adversarial learning. In contrast to these approaches,
[76] proposed conditional alignment of latent representations to
strike a better balance between fairness and utility. In addition to
adversarial learning, alternative methods have been proposed to
mitigate bias. [69] advocated domain independent training, where
different classifiers are trained for different demographic groups.
[56, 62] disentangled the latent representations for task predictions
and sensitive attributes, respectively, to reduce the influence of the
sensitive attributes on the model’s decision-making process.
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2.3 Adversarial Learning for Invariance
In addition to the adversarial learning framework used in the fair-
ness community, our work also shares similarities with unsuper-
vised domain adaptation, which aims to learn domain-invariant
representations. [16] proposed a domain classifier to learn the repre-
sentations that are invariant to the domain shift, with an adversary
implemented by a gradient reverse layer. [63] used a discriminator
to align the distributions of source domain and target domain in the
representation space, following the training of GANs [21]. Similar
to [76], [39, 77] proposed a conditional discriminator that takes into
account the multimodal nature of feature distributions. One key
difference compared to the fairness scenario is that labels in the
target domain are not available in domain adaptation. Therefore,
the conditions in [39, 77] are the label predictions, rather than the
ground-truth labels used in [76].

3 PRELIMINARY FOR SVT
We recap the formulation and solutions of singing voice transcrip-
tion (SVT), which is defined according to the framework intro-
duced in [24, 67]. The input to an SVT system is the waveform 𝒙
while the output 𝒚 = [(𝑜1, 𝑓1, 𝑝1), ..., (𝑜𝑛, 𝑓𝑛, 𝑝𝑛), ..., (𝑜𝑁 , 𝑓𝑁 , 𝑝𝑁 )]
is a sequence of note events, where 𝑜𝑛, 𝑓𝑛, 𝑝𝑛 represent the on-
set/offset/pitch of each note, respectively. Consequently, the task of
SVT can be regarded as a sequence-to-sequence problem. Since it
is challenging to supervise the entire model using the ground truth
note events directly, frame-level labels 𝑶, 𝑺, 𝑽 , 𝑷 are constructed
to mark the onset/silence/octave class/pitch class of each frame.
Specifically, 𝑶, 𝑺 comprise binary classes, whereas 𝑽 and 𝑷 have
multiple classes. The number of categories of pitch classes is fixed
to 12, while the number of categories of octaves are chosen based
on the pitch range. For example, the octave class of C4 is 4 and the
pitch class is C. We add an additional octave/pitch class to represent
the pitch of silence. The loss function is formulated to minimize
the empirical risk as follows:

LSVT (�̂�,𝒚) =
1
𝑇

𝑇∑︁
𝑡=1

[𝑙BCE (�̂�𝑡 ,𝑂𝑡 ) + 𝑙BCE (𝑆𝑡 , 𝑆𝑡 )+ (1)

𝑙CE (𝑉𝑡 ,𝑉𝑡 ) + 𝑙CE (𝑃𝑡 , 𝑃𝑡 )],

where 𝑇 refers to the number of frames, �̂�𝑡 , 𝑆𝑡 ,𝑉𝑡 , 𝑃𝑡 denote the
frame-level predictions while �̂� represents note-level predictions.
After post-processing, �̂�𝑡 , 𝑆𝑡 ,𝑉𝑡 , 𝑃𝑡 are transformed to �̂�. Interested
readers can refer to [24, 67] for more detailed information. An SVT
system consists of an acoustic encoder and a note predictor. The
note predictor is a simple linear layer, while the design of acoustic
encoder can vary. For instance, [67] employed EfficientNet [61],
while [24] adapted self-supervised-learning models, e.g. wav2vec
2.0 as the acoustic encoder. To evaluate SVT systems, f1-scores of
COnPOff (correct onset, pitch, and offset), COnP (correct onset and
pitch), and COn (correct onset) are commonly used. These metrics
were proposed in [47] and have since been widely adopted. The
first two metrics are related to the accuracy of pitch estimation. We
use the default tolerances as implemented in the python package
mir_eval [53] for the evaluation of SVT systems in this work.

4 FAIRNESS ANALYSIS FOR SVT
4.1 Female Superiority in SVT Performance:

Evidence from Multiple Datasets
We evaluate the performance of state-of-the-art singing voice tran-
scription (SVT) systems from [24] on three benchmark datasets,
including MIR-ST500 [67], N20EMv2 [24], and ISMIR2014 [47]. The
results for two gender groups are presented in Table 1, where
“model1” is trained on theMIR-ST500 training split, “model2” on the
N20EMv2 training split, and “model3” on both training sets. These
models were built based on wav2vec 2.0 [2]. The ISMIR2014 dataset
already has the gender label for each song. The gender labels for
the N20EMv2 and MIR-ST500 can be obtained by directly listening
to the audio recordings. For double confirmation, we also check
the video modality provided in N20EMv2 and the original Youtube
links in MIR-ST500. Across all datasets, we observe that the SVT
performances of three models on females consistently outperform
that on males in terms of COnPOff and COnP f1-scores, which
are the metrics related to pitch estimation. However, the COn per-
formance does not demonstrate the consistent female superiority.
We compute the performance gap as the difference between male
and female metrics, i.e., metricgap = metricmale −metricfemale. We
find that the performance gaps between gender groups are signif-
icant for pitch-related metrics on the N20EMv2 and ISMIR2014
datasets. Even though the performance gap is comparably small for
MIR-ST500, female superiority in SVT performance remains valid.

Apart from the datasets evaluated in [24], we conduct experi-
ments on a recent Mandarin singing dataset called M4Singer [75].
This dataset comprises data from 20 singers across four main voice
types (soprano, alto, tenor, and bass). Since M4Singer lacks official
training-test splits, we manually partition the data, selecting data
from two male and two female singers representing the above four
voice types for the test split and the data from the remaining singers
for the training split. To ensure a fair test split, we make sure that
the total duration of selected female data in the test split is almost
equal to that of male data. We follow the training configuration
in [24] to train our SVT system from scratch using wav2vec 2.0,
making minimal modifications to achieve high SVT performance.
We add an additional octave category to the classifier to account for
the larger pitch range of M4Singer. The M4Singer dataset already
provides the gender labels, similar to ISMIR2014. The results in
Table 1 show that the SVT performance of females is still better
than that of males, with a significant performance gap.

4.2 Female Superiority in SVT Performance:
Evidence from Multiple Models

The models evaluated in Sec. 4.1 are all based on wav2vec 2.0 [2].
However, it is important to investigate whether the observed female
superiority is limited to this particular model choice. To explore
this question, we replace the wav2vec 2.0 trained on M4Singer
with other self-supervised-learning (SSL) models, e.g. Hubert [30],
wavLM [4], and data2vec [1]. Although these models have different
SSL objectives and slightly different model architectures, we find
that the SVT performance of the female group is still better than
the male group with significant margins, as shown in Table 2. To
strengthen our findings, we further evaluate the performance of
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Table 1: COnPOff/COnP/COn F1-score (%) of state-of-the-art SVT systems in [24] on multiple datasets. We using bold face to
highlight the gender group with better performance and red bold face to mark the results with large bias.

Dataset Model COnPOff (%) COnP (%) COn (%)
total ↑ female ↑ male ↑ gap total ↑ female ↑ male ↑ gap total ↑ female ↑ male ↑ gap

MIR-ST500
model1 52.39 53.11 51.47 -1.64 70.73 72.54 68.42 -4.12 78.32 79.36 77.00 -2.36
model2 34.55 35.29 33.60 -2.55 51.64 52.76 50.21 -2.55 71.33 72.07 70.39 -1.68
model3 52.84 54.02 51.33 -2.69 70.00 71.17 67.85 -3.32 78.05 78.84 77.05 -1.79

N20EMv2
model1 55.20 60.96 51.55 -9.41 72.03 79.76 67.11 -12.65 88.51 90.63 87.16 -3.47
model2 68.62 74.82 64.68 -10.14 75.69 81.27 72.14 -9.12 92.83 94.33 91.88 -2.44
model3 73.06 78.34 69.69 -8.65 79.56 84.38 76.49 -7.89 93.66 94.96 92.83 -2.13

ISMIR2014
model1 52.58 61.22 45.28 -15.94 67.75 74.90 61.70 -13.20 92.13 91.93 92.30 +0.37
model2 57.35 62.42 53.06 -9.36 72.15 79.35 66.06 -13.29 91.53 92.25 90.92 -1.33
model3 59.95 65.61 55.16 -10.45 73.85 80.55 68.19 -12.36 92.80 93.18 92.49 -0.69

M4Singer

wav2vec2 53.66 57.27 49.93 -7.34 61.95 66.36 57.38 -8.98 82.60 81.66 83.58 +1.91
Hubert 55.11 58.39 51.73 -6.66 64.17 68.10 60.10 -8.00 82.13 81.53 82.76 +1.23
wavLM 57.06 60.33 53.68 -6.66 65.40 68.87 61.82 -7.05 82.73 82.29 83.19 +0.90
data2vec 53.98 57.45 50.40 -7.05 63.04 67.09 58.86 -8.23 82.30 82.13 82.48 +0.35
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Figure 2: (a) SVT performance of EfficientNet on ISMIR2014.
(b) SVT performance of model3 on ISMIR2014. (c) SVT perfor-
mance of EfficientNet on MIR-ST500. (d) Pitch distributions
of male/female/child groups on ISMIR2014.
EfficientNet-based SVT system in [67]. As presented in Fig. 2 (a)
and (c), we note that on the MIR-ST500 and ISMIR2014 datasets, the
SVT performance of female group still outperforms that of the male
group in terms of COnPOff and COnP f1-scores, which is consistent
with our earlier conclusion.

4.3 Possible Reasons for Female Superiority
From Sec. 4.1 and Sec. 4.2, we conclude that female superiority
in SVT performance is valid across different datasets and model
choices. To explore possible reasons behind this phenomenon,
we first examine the statistics of the SVT datasets to investigate
whether the singing datasets typically possess the property of gen-
der data imbalance. As presented in Table 2, we include the sta-
tistics of two gender groups in the training splits of MIR-ST500,
N20EMv2, and M4Singer (ISMIR2014 is only used for evaluation).

Table 2: Demographic statistics of SVT training splits.

Dataset Songs Num Duration (h)
total female male total female male

MIR-ST500 400 221 179 27.62 15.13 12.49
N20EMv2 123 52 71 6.44 2.74 3.70
M4Singer 521 246 275 22.71 10.27 12.44

While MIR-ST500 has a larger proportion of female data, N20EMv2
and M4Singer have larger proportions of male data. Nevertheless,
all the SVT systems trained on these datasets favored females, indi-
cating that the source of bias is not merely the data imbalance. We
hypothesize that the gender bias in SVT performance is attributed
to the differences of sound characteristics across different demo-
graphic groups. Specifically, we assume that pitch distributions
make substantial contributions to the female superiority. As shown
in Fig. 1, we find that (1) the female group generally has higher
pitch range than the male group; (2) the proportion of male and
female labels for each specific pitch is different.

To further support our assumption, we perform an additional
evaluation on the ISMIR2014 dataset, which includes the child
group. Typically, children have different inherent properties in
sound voices compared to female adults and male adults [48, 70].
For instance, the pitch distribution of the child group is different
from both the female group and male group, as present in Fig. 2
(d). Consequently, we find that both the EfficientNet-based SVT
system and wav2vec 2.0-based SVT system (model3) demonstrate
performance disparity among the three groups. As shown in Fig. 2
(a) and (b), the SVT performance of the child group significantly out-
performs that of the male group while is close to that of the female
group. To interpret this, the pitch distribution difference between
the male group and the child group is large while the difference be-
tween the female group and the child group is comparatively subtle.
As there are no existing SVT annotations for child training data, we
narrow down the scope of this work to gender fairness and leave
the discussion on age fairness to future work. Similarly, as present
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Figure 3: Framework of note-conditioned adversarial learn-
ing for singing voice transcription.

in Table 1, the performance gap on the MIR-ST500 dataset is not as
large as the other three datasets. We assume the reason is that the
singing recordings in MIR-ST500 were performed by professional
singers, resulting in smaller pitch distribution difference between
two gender groups.

5 BIAS MITIGATION FOR SVT
5.1 Problem Formulation and Basic Framework
Suppose the training samples are drawn from the domain DS =

{(𝒙 (𝑛) ,𝒚 (𝑛) , 𝐴(𝑛) )}𝑁S
𝑛=1, while the test data are sampled from the

domain DT = {(𝒙 (𝑛) ,𝒚 (𝑛) , 𝐴(𝑛) )}𝑁T
𝑛=1. Here 𝒙

(𝑛) represents the
raw waveform of the singing audio, 𝒚 (𝑛) represents the ground-
truth note events, and 𝐴(𝑛) is the sensitive attribute. In our study,
𝐴 = 0 represents female singers, while 𝐴 = 1 represents male
singers. As explained in Sec. 3, the basic SVT system consists of two
primary components: an acoustic encoder 𝜃 and a note predictor
𝜙 . We select self-supervised-learning (SSL) models as our acoustic
encoder due to their state-the-of-art performance in SVT tasks [24].

Fig. 3 illustrates our proposed bias mitigation framework for
the SVT task. The input singing waveform 𝒙 is first processed by
the acoustic encoder, which consists of a CNN and a transformer
[64]. We refer readers to original papers of self-supervised-learning
(SSL) models, e.g. wav2vec 2.0 [2], Hubert [30], wavLM [4], and
data2vec [1] for details on these models, since they are not the
focus of this paper. These models are first pre-trained on unlabeled
speech data and then adapted to our singing data using a linear
probing and then full fine-tuning approach [24]. After the acoustic
encoder 𝜃 , we obtain the acoustic features 𝒛 ∈ R𝑇×𝐷 , where𝑇 is the
number of frames and 𝐷 is the number of feature dimensions. The
note predictor 𝜙 is parameterized by a linear layer, and accepts the
acoustic features 𝒛 to predict the frame-level labels: �̂�𝑡 , 𝑆𝑡 ,𝑉𝑡 , 𝑃𝑡 =

𝜙 (𝒛𝑡 ). The loss function for SVT task in domain DS is:

L𝑦 = E(𝒙,𝒚 )∼DS [LSVT (�̂�,𝒚)] , �̂� = 𝜙 (𝒛) = 𝜙 ◦ 𝜃 (𝒙), (2)

where LSVT is defined in Eq. 1. To evaluate the SVT performance,
we compute the f1-scores of the COnPOff, COnP, and COn in do-
main DT . We refer to these metrics as utility metrics:

𝑈 = E(𝒙,𝒚 )∼DT [metric(�̂�,𝒚)] , (3)
where metric can be the f1-score of COnPOff or COnP. As our
objective is to mitigate gender bias in SVT systems, we propose
the following fairness metrics, which focus on the performance
disparity between two demographic groups:
𝐹 = E(𝒙,𝒚,𝐴=1)∼DT [metric(�̂�,𝒚)] −E(𝒙,𝒚,𝐴=0)∼DT [metric(�̂�,𝒚)] ,

(4)
This definition is similar to the accuracy parity in [76]: 𝑃 (�̂� ≠ 𝒚 |𝐴 =

0) = 𝑃 (�̂� ≠ 𝒚 |𝐴 = 1) only except that we replace accuracy with f1-
score as the evaluation metric for parity. To achieve bias mitigation,
we formulate the problem as a bundle of optimization objectives:{

max𝜃,𝜙 min{𝐹 (𝜃, 𝜙), 0}
max𝜃,𝜙 𝑈 (𝜃, 𝜙) (5)

5.2 Adversarial Learning for Fairness
The optimization objectives in Eq. 5 cannot be directly optimized
due to the unavailability of the test data DT during the training of
𝜃, 𝜙 . To mitigate the gender bias, we propose an adversarial learn-
ing framework to learn fair acoustic representations by assuming
that the acoustic encoder cannot discriminate between two gen-
der groups for SVT task. To achieve this, we employ an attribute
predictor 𝜓 that predicts the labels of sensitive attributes, such
as gender. The goal is to eliminate the gender information in the
acoustic features 𝒛 while preserving the information necessary
for predicting the note events. The binary cross-entropy between
gender predictions and ground truth gender labels serves as the
learning objective of the attribute predictor:

L𝐴 = E(𝒙,𝑠 )∼DS

[
1
𝑇

𝑇∑︁
𝑡=1

𝑙BCE (𝐴𝑡 , 𝐴)
]
, 𝐴 = 𝜓 (𝒛) = 𝜓 ◦ 𝜃 (𝒙) . (6)

To perform frame-level gender classification independently, each
frame of acoustic features, denoted as 𝒛𝑡 , is annotated with the same
attribute label𝐴. We then average the frame-level classification loss
to obtain the song-level or utterance-level loss. We assume that the
temporal model structure in SSL models has sufficiently learned the
gender representations and thus do not require a temporal attribute
predictor. Our preliminary experiments show no empirical gains
by including a temporal attribute predictor.

From a distribution alignment perspective, our objective is to
achieve gender-invariant acoustic features, which requires that
the distribution 𝑃 (𝒛 |𝐴 = 0) and the distribution 𝑃 (𝒛 |𝐴 = 1) be
similar. The loss function in Eq. 6 serves as a proxy measure for
the distance between the two distributions, and thus, the attribute
predictor𝜓 must be trained to be powerful enough to distinguish
between 𝑃 (𝒛 |𝐴 = 0) and 𝑃 (𝒛 |𝐴 = 1). Additionally, the acoustic
encoder 𝜃 must be trained to deceive𝜓 . Therefore, the loss function
for the acoustic encoder is formulated as L𝑦 − 𝜆L𝐴 , where 𝜆 is a
hyper-parameter that balances the two loss terms. Theoretically,
this can be implemented by a gradient reverse layer (GRL) [16].
From the perspective of fairness criteria, the adversarial learning
approach enforces that 𝒛 ⊥ 𝐴. Since �̂� = 𝜙 (𝒛), �̂� ⊥ 𝐴 can be further
enforced, which is the independence criteria [3].
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5.3 Note-conditioned Adversarial Learning
We have observed that there is a difference in pitch distributions be-
tween males and females, which may contribute to the performance
disparity. Motivated by this, we propose the conditional distribution
alignment, which enforces that 𝑃 (𝒛 |𝒚, 𝐴 = 0) = 𝑃 (𝒛 |𝒚, 𝐴 = 1). By
incorporating note labels as an extra input to the attribute predic-
tor𝜓 , we can eliminate the conditional dependencies between the
acoustic features and the gender labels. Since the note labels are
available for both demographic groups, we propose two variants for
the design of condition. In variant 1, the ground-truth notes 𝒚 are
transformed into frame-level labels 𝑶, 𝑺, 𝑽 , 𝑷 , which are then fed
into the attribute predictor. For variant 2, the logits of frame-level
predictions �̂�𝑡 , 𝑆𝑡 ,𝑉𝑡 , 𝑃𝑡 are used instead.

From the perspective of fairness criteria, the variant 1 enforces
𝒛 ⊥ 𝐴|𝒚 while the variant 2 enforces 𝒛 ⊥ 𝐴|�̂�. Therefore, the former
can enforce �̂� ⊥ 𝐴|𝒚, which is the separation criteria [3]. The for-
mulation of variant 2 is motivated by the perspective of distribution
alignment. The prediction �̂� contains prior knowledge about the
classifier 𝜙 and similarities among different pitches (the predicted
probabilities of other pitch values besides the true pitch value are
not zeros, similar to dark knowledge in knowledge distillation [28]),
while the ground truth 𝒚 is one hot and has no information about
other pitches. Considering that the pitch distributions of two gen-
der groups are different, the proportion of male and female labels
for each specific pitch value is also different. When conducting the
conditional alignment for a specific pitch, the similarities contained
in the pitch logits can assist in aligning other pitches, resulting
in an improved and more efficient conditional alignment by the
attribute predictor.

The framework of note-conditioned adversarial learning for SVT
is depicted in Fig. 3, and its variant 2 is presented in Alg. 1. The algo-
rithm of variant 1 can be similarly derived. To train the SVT system,
we follow the linear-probing and full-finetuning strategy proposed
in [24]. During the linear probing stage, only the label predictor 𝜙
and attribute predictor𝜓 are updated. This stage serves as a warm-
up for these two models and preserves the pre-trained features
of SSL models. Then in the full-finetuning stage, all three models
𝜃, 𝜙,𝜓 are updated using different learning rates. To parameterize
the note-conditioned attribute predictor, we first use two linear
layers to embed each frame of acoustic features 𝒛 and notes𝒚 (or �̂�),
respectively. Then the two embeddings are concatenated and passed
through two linear layers with ReLU activations. We note that by
modifying the loss function in Eq. 6, our bias mitigation framework
can be readily applied to other types of sensitive attributes, such as
𝐴 is a multi-class attribute, or a continuous attribute, or a vector
that encompasses multiple attributes.

5.4 Fairness-Utility Trade-off
Our task involves an inherent trade-off between fairness 𝐹 and
utility𝑈 , as noted in previous literature [32]. This is due to the fact
that when the gender information is removed from the acoustic
features, the representations used for the SVT task may be affected.
Optimizing L𝑦 − 𝜆L𝐴 of the acoustic encoder 𝜃 poses a challenge
as the the two loss terms have conflicting natures. Empirical ex-
periments demonstrate that in some cases, improvements in the
fairness metric 𝐹 come at a cost of reduced utility metric 𝑈 . Our

Algorithm 1 Note-conditioned adversarial learning for SVT

Require: Acoustic encoder 𝜃 (0) pre-trained on speech data under
SSL objective, randomly initialized label predictor 𝜙 (0) and at-
tribute predictor𝜓 (0) , learning rates 𝜂1, 𝜂2, 𝜂3 for 𝜃, 𝜙,𝜓 , training
steps 𝐾1, 𝐾2 for linear probing and full finetuning.
for 𝑘 = 1 to 𝐾1 + 𝐾2 do

𝒛 = 𝜃 (𝑘−1) (𝒙), �̂� = 𝜙 (𝑘−1) (𝒛)
𝐴𝑡 = 𝜓

(𝑘−1) (𝒛.detach(), �̂�.detach()), compute L𝐴 in Eq. 6
𝜓 (𝑘 ) = 𝜓 (𝑘−1) − 𝜂3 𝜕L𝐴

𝜕𝜓 (𝑘−1) ⊲ Update𝜓

𝐴𝑡 = 𝜓
(𝑘 ) (𝒛, �̂�), compute L𝑦,L𝐴 in Eq. 2 and 6

𝜙 (𝑘 ) = 𝜙 (𝑘−1) − 𝜂2
𝜕L𝑦

𝜕𝜙 (𝑘−1) ⊲ Update 𝜙
if 𝑘 ≤ 𝐾1 then ⊲ Update 𝜃

𝜃 (𝑘 ) = 𝜃 (𝑘−1)

else
𝜃 (𝑘 ) = 𝜃 (𝑘−1) − 𝜂1 (

𝜕L𝑦

𝜕𝜃 (𝑘−1) − 𝜆
𝜕L𝐴

𝜕𝜃 (𝑘−1) )
end if

end for

goal is to improve the fairness metric 𝑈 without significantly de-
grading the utility metric𝑈 , starting from the initial point (𝐹0,𝑈0)
without mitigating bias. To achieve this, we introduce a tolerance
hyper-parameter 𝛿 for 𝑈 . We aim to increase the value of 𝐹 as
much as possible within the range of𝑈 > 𝑈0 − 𝛿 . Meanwhile, sac-
rificing utility beyond this range is not acceptable for real-world
applications. This trade-off criterion facilitates the model selection.
Typically, we set 𝛿 as 2% or 5% for f1-scores of COnPOff and COnP.

6 EMPIRICAL EXPERIMENTS
6.1 Bias Mitigation Performance
To evaluate in-domain fairness, we adopt the proposed note-condi-
tioned adversarial learning method on the M4Singer dataset. The
SVT system is based on wav2vec 2.0 [2] and trained on the training
split of M4Singer and evaluated on its test split. We set the learning
rates for acoustic encoder and label predictor to be fixed at𝜂1 = 𝜂2 =
3 × 10−4. To further evaluate out-of-domain fairness, we conduct
experiments on model1 and model3, as displayed in Table 1. We set
the learning rates to fixed values of 𝜂1 = 5× 10−5, 𝜂2 = 3× 10−4 fol-
lowing [24]. During the bias mitigation, we select the learning rate
for the attribute predictor 𝜂3 from the set {0.1, 0.01, 0.001, 0.0001}
and the balancing term 𝜆 from the set {0.2, 0.5, 1.0, 2.0}. We report
the best results we can achieve. This hyper-parameter selection
also applies to the baselines we compare with in the following
Sec. 6.2. We find that further increasing the learning rate 𝜂3 or
the balancing term 𝜆 results in severe degradation in utility, even
though the gender bias seems to be eliminated, as elaborated in
Sec. 6.3. Additionally, when 𝜂1 is large, we find that the best results
are achieved when 𝜂3 is also large. Given our framework is based
on adversarial learning, aiming to achieve equilibrium between
the acoustic encoder and the attribute predictor, a larger learning
rate for the encoder necessitates a corresponding increase in the
learning rate of the attribute predictor to attain equilibrium1.

1We conducted our experiments using the open-sourced repo: https://github.com/
guxm2021/SVT_SpeechBrain.

https://github.com/guxm2021/SVT_SpeechBrain
https://github.com/guxm2021/SVT_SpeechBrain
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Table 3: Bias mitigation performance of note-conditioned adversarial learning.

Train set Test set Method COnPOff (%) COnP (%)
Utility (𝑈 ) ↑ Fairness (𝐹 ) ↑ Utility (𝑈 ) ↑ Fairness (𝐹 ) ↑

M4Singer M4singer ERM 53.66 - 7.34 61.95 - 8.98
Ours 52.48 (-1.18) - 3.61 (+3.73) 60.67 (-1.28) - 4.21 (+4.77)

MIR-ST500
N20EMv2 ERM 55.20 - 9.41 72.03 -12.65

Ours 53.29 (-1.91) - 4.14 (+5.27) 72.71 (+0.68) -10.82 (+1.83)

ISMIR2014 ERM 52.58 -15.94 67.75 -13.20
Ours 48.18 (-4.40) - 8.29 (+7.65) 65.40 (-2.35) - 9.08 (+4.12)

N20EMv2 ERM 73.06 - 8.65 79.56 - 7.89
MIR-ST500 Ours 72.43 (-0.63) - 5.78 (+2.87) 78.47 (-1.09) - 6.82 (+1.07)
N20EMv2 ISMIR2014 ERM 59.95 -10.45 73.85 -12.36

Ours 59.57 (-0.38) - 7.49 (+2.96) 73.33 (-0.52) - 7.75 (+4.61)

Table 3 presents a comparison between the SVT systems trained
with our note-conditioned adversarial learning (variant 2) and those
trained using empirical risk minimization (ERM) in Eq. 2 without
bias mitigation. Our experiments on the M4Singer dataset reveal
that the fairness metrics improve by over 50% for COnPOff and
COnP, respectively. At the same time, the utility metrics drop only
by 1.18% and 1.28% for COnPOff and COnP, respectively. Apart
from the in-domain fairness results, we evaluate the out-of-domain
fairness results on model1 and model3 (mentioned in Sec. 4.1). Our
experiments demonstrate that applying the bias mitigation method
on model1 significantly improves its fairness. In particular, the per-
formance disparity decreases by 50% on N20EMv2 and ISMIR2014,
in terms of COnPOff. These results validate the effectiveness of
our bias mitigation method on out-of-domain data. Furthermore,
we achieve fairer SVT performance on both in-domain and out-of-
domain scenarios with minor total performance degradation when
using the state-of-the-art performing SVT system (model3).

6.2 Comparisons with Baselines
We compare our note-conditioned adversarial learning framework
with two baseline methods: adversarial learning (AL), and domain
independent training proposed in [69]. We denote our method as
“NCAL (variant 1)” and “NCAL (variant 2)”. For AL, we keep the
same configuration as our NCAL, except that we do not feed any
condition into the attribute predictor. For domain independent
training, we compare our method with two variants: calibrated
inference and miscalibrated inference, which differ in whether the
gender labels are used during the inference. These two inferences
are abbreviated as “ DInD (w/ calibr.)” and “DInD (w/o calibr.)”,
respectively. We refer readers to [69] for more technical details. We
evaluate the comparisons on model3 and report the results on the
N20EMv2 and ISMIR2014 datasets.

We present the Fairness-Utility trade-off of various bias mitiga-
tion methods in Fig. 4. According to the optimization bundle in
Eq. 5, an upper-right point signifies a better trade-off compared
to a lower-left point. Firstly, we observe that our two variants of
NACL, “NCAL (variant 1)” and “NCAL (variant 2)”, perform the
best in the most cases in terms of fairness-utility trade-off. These
two variants perform similarly on N20EMv2. On the ISMIR2014
dataset, NACL variant 2 performs better for COnPOff while variant
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Figure 4: Comparisons among different bias mitigationmeth-
ods of Fairness-Utility trade-off on N20EMv2 and ISMIR2014.

1 exhibits superiority for COnP. We then note that NCAL con-
sistently outperforms the baseline AL. The performance of AL is
similar to NACL only in terms of COnP on N20EMv2. However,
in other cases, AL shows lower utility and less fairness. With re-
spect to DInD, it shows better fairness than NCAL only in terms of
COnP on N20EMv2 with calibration. However, its utility is more
severely degraded than NCAL. In other cases, NACL consistently
outperforms DInD. Although adversarial learning approaches are
prone to instability during training compared to non-adversrial
learning approaches, such as DInD, our proposed NCAL offers a
better fairness-utility trade-off. Moreover, DInD cannot be easily
applied to the scenarios where continuous sensitive attributes or
multiple sensitive attributes are considered.

6.3 Further Empirical Analysis
In our experiments, we observe that setting a larger learning rate 𝜂3
or the balancing term 𝜆 leads to near-perfect gender fairness but a
drastic degradation in utility. As presented in Table 4, on M4Singer,
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Table 4: More bias mitigation results.

Train set Test set Method 𝜂3 𝜆
COnPOff (%) COnP (%)

Utility (𝑈 ) ↑ Fairness (𝐹 ) ↑ Utility (𝑈 ) ↑ Fairness (𝐹 ) ↑

M4Singer M4singer

ERM - - 53.66 - 7.34 61.95 - 8.98
AL 1.0 3.0 42.56 (-11.10) + 4.65 49.60 (-12.35) + 6.35
NCAL 0.1 5.0 49.97 (- 3.69) + 0.39 57.66 (- 4.29) + 1.57
NCAL 0.1 3.0 49.87 (- 3.79) + 1.29 58.53 (- 3.42) + 0.60

MIR-ST500
N20EMv2 ERM - - 55.20 - 9.41 72.03 -12.65

NCAL 0.0001 5.0 45.78 (- 9.42) + 2.45 69.54 (- 2.49) - 3.77

ISMIR2014 ERM - - 52.58 -15.94 67.75 -13.20
NCAL 0.0001 5.0 42.24 (-10.34) + 3.01 62.44 (- 5.31) + 1.22

N20EMv2 ERM - - 73.06 - 8.65 79.56 - 7.89
MIR-ST500 NACL 0.001 5.0 72.28 (- 0.78) - 7.78 78.70 (- 0.86) - 8.23
N20EMv2 ISMIR2014 ERM - - 59.95 -10.45 73.85 -12.36

NACL 0.001 5.0 50.95 (- 9.00) + 2.49 65.87 (- 7.98) + 0.64

our NCAL method can achieve almost gender performance equality
when 𝜆 is set to 3.0 or 5.0, but at the cost of more utility degradation
than the results in Table 3. However, the baseline AL method fails
to achieve such equality. We only observe a better performance
for the male group with much more utility deterioration compared
to NCAL when 𝜂3 = 1.0 and 𝜆 = 3.0. This trend is consistently
observed on model1 and model3 using NCAL for bias mitigation.
We hypothesize that increasing either 𝜂3 or 𝜆 enhances the discrimi-
nation ability of the attribute predictor, causing the models to focus
more on the fairness while neglecting the utility. As explained in
Sec. 5.4, such models may not be suitable for real-world applications
where both fairness and utility are important.

The results in Table 3 and 4 can also validate our assumptions
behind the performance disparity in SVT. Our baseline AL aims
to ensure that the learnt acoustic representations contains as little
gender information as possible. In this way, the effects of sound
characteristics, which are related to gender, can be implicitly miti-
gated. The improvements in terms of fairness metrics brought by
baseline AL provide evidence about our assumption that gender
bias in SVT performance is attributed to the differences of sound
characterises across different demographic groups. Additionally,
when conditioning on the pitch information, our SVT systems could
achieve nearly perfect fairness, as presented in Table 4, which fur-
ther demonstrates the substantial contributions of pitch distribution
difference to the performance disparity.

7 DISCUSSION AND FUTUREWORK
In addition to the primary focus on group fairness in this work, max-
min fairness [51] is also raised in certain cases. Max-min fairness
aims to minimize the worse-case error rates, offering an alternative
perspective on fairness evaluation. Our motivation stems from the
objective of enhancing user experience and mitigating potential
discriminatory treatment when utilizing SVT systems and their
downstream applications. Consequently, our main target is to strive
for performance equalization across different demographic groups.
Therefore, there is less discussion on max-min fairness. Despite
this, we still observed improved performance for male data in most
cases after applying our bias mitigation approach.

In this work, we formulate our solution from the perspective of
fairness. We think the perspective of signal processing may also
be beneficial to further interpret our findings. By incorporating
signal processing approaches, our adversarial learning framework
may further enhance SVT performance in terms of both fairness
and utility. We identify this as an avenue for future exploration.
Furthermore, we think our approach could be extended to consider
other sensitive attributes, such as age, race, language. Beyond de-
mographic groups, we also recognize that different instruments
generally exhibit distinct pitch distributions and timbre characteris-
tics. Hence, our approach holds potential applicability in the domain
of automatic music transcription [19], wherein musical notes are
inferred from audio signals produced by diverse instruments.

8 CONCLUSION
This work represents the first attempt of fairness topic within the
singing-centric deep learning community. We presented evidence
that the performance of singing voice transcription (SVT) on fe-
male data surpasses that of male data, irrespective of the mod-
els or datasets employed. Our findings suggested that this perfor-
mance disparity is attributed to the inherent differences between
male and female singing voices, especially in pitch distribution.
Given the significance of this fairness issue, we proposed a note-
conditioned adversarial learning approach to mitigate gender bias
in SVT. Specifically, our approach leveraged an attribute predictor to
learn gender-invariant acoustic representations. By conditioning on
the note events, we further achieved conditional alignment between
acoustic features of different groups. Our results demonstrated the
effectiveness of our bias mitigation method, as it significantly im-
proves fairness metrics while maintaining utility metrics across
both in-domain and out-of-domain data.
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