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| What is attention sink?

* Attention sink refers to that Language Models (LMs) assign significant
attention to the first token (Xiao et al. 2024)

Feed Forward
Network (FFN)

Pre-LN

+
Ol
Multi-Head Self-
Attention (MHSA)

Pre-LLN
\_ Lx)
H1

Xiao et al. Efficient Streaming Language Models with Attention Sinks. ICLR 2024



| What is attention sink?

* In some cases, specific tokens may become sink tokens (Yu et al. 2024)
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| What can we do with attention sink?

* Long context understanding / generation by only computing the attention
on the sink token and recent tokens (Xiao et al. 2024)
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| What can we do with attention sink?

* KV cache compression by only constructing the KV cache of special tokens
(including sink tokens) and recent tokens (Ge et al. 2024)
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| What can we do with attention sink?

* Model quantization by preserving the KV cache of sink tokens with full
precision (Liu et al. 2024)
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| What can we do with attention sink?

*  Multi-model language modeling by considering attention sink (Yang et al. 202
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| Mechanism of attention sink

Massive Activations in hidden states of sink token: its L2-norm is significantly
larger than that of other tokens (Cancedda 2024; Sun et al. 2024)
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| Mechanism of attention sink

*  We find that QK angle matters for attention sink
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| Mechanism of attention

sink

Why massive activations?

Layer norm retains values for specific dimensions

for key of sink token

400 s 24
- 320! sl
= 240! el
2 N1 12}
T 160 hig 1 |
80/ 6!
0G4 8§ 121620242832 O

Block

Special property of KV of sink token

\ Kie 1

0 4 8 12 16 20 24 28 32

Block

( + )
Fl
Feed Forward
Network (FFN)
Pre-LN
+
Ol
\ Multi-Head Self-
\Attention (MHSA)
Pre-LLN
- LX)
1
|
—— V3
[
Vie1

S 1 b o oo

0 4 8 12 16 20 24 28 32

Block

10



| How to measure attention sink?

* Attention scores of the first token are significantly larger than others
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| How to measure attention sink?

* Attention sink appears widespread in ¢ Attention sink emerges in LM

various LMs, even in LMs with 14M params. pre-training
Model scale
128 £ LLM Sink; (%)
< - Base  Chat
o 60 .
Z 40 oo Mistral-7B 97.49 88.34
. 20! —9— LLaMA?2 LLaMA2-7B 02.47 02.88
LLaMA3 LLaMA2-13B | 91.69 90.94
OToM 100M 1B 10B LLaMA3-8B | 99.02 98.85

Num. of param.
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| How to measure attention sink?

* Attention sink appears with / without ¢ Under all the repeat token

BOS, even appears under random input!
tokens
Sink (%)
LLM natural random repeat
GPT2-XL 77.00 70.29 62.28
Mistral-7B 97.49 75.21 0.00
LLaMA2-7B Base | 92.47 90.13 0.00
LLLaMA3-8B Base | 99.02 91.23 0.00

* Models with NoPE / relative PE / ALiBi / Rotary have same hidden states
while models with absolute / learnable PE do not



| Impact of positional embeddings under repeated tokens

* Closed form/upper bound for NoPE / relative PE / ALiBi / Rotary

Proposition 1. For LMs with NoPE, the attention scores for t repeated tokens are t—* uniformly, i.e.,
there is no attention sink.

Proof. We have that
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Proposition 2. For LMs with relative PE, there is no attention sink for t repeated tokens.

Proof. For LMs with relative PE, the dot product between each query and key is
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| Impact of positional embeddings under repeated tokens

* Closed form/upper bound for NoPE / relative PE / ALiBi / Rotary

Proposition 3. For LMs with ALiBi, there is no attention sink for t repeated tokens.

Proof. For LMs with ALiBi, similar to relative PE, the dot product between each query and key is

Lh 1.Lhy _ LhylLhT h N Lhalh T h :
(g, k") = a7k + gt — 1) =q""k + Gaini (t — 1), (21)
then we have the attention scores
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Here g"..(t — ¢) is monotonic decreasing function of ¢ — 4, so there is no attention sink on the first
token. ]
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| Impact of positional embeddings under repeated tokens

* Closed form/upper bound for NoPE / relative PE / ALiBi / Rotary

Proof. For LMs with Rotary, the dot product between each query and key is

(@b k") = gt Ro i k" (23)
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where ;_; is the angle between the rotated query and the rotated key. Then the attention scores are
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Then the attention scores for each token are upper-bounded and decrease to 0 as £ grows. ]



| Attributing attention sink to LM pre-training

* LM pre-training objective L x ~ Ddata [ (pg (X ))]

* Experiments on LLaMA2-style models

Data distribution

Model architecture
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| Effects of optimization on attention sink

Training steps

Default setup
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| Effects of

on attention sink

* Small learning rates not only slow down the emergence, but also mitigate
attention sink

learning rate | training steps (k) Sinkj(%) valid loss
8e-4 10 23.44 379 <«
8e-4 20 32.23 3.70 .
4e-4 20 18.18 3.73 -— We keep the tralnlng
2e-4 20 11.21 3.78 steps X learning rate
le-4 20 2.90 3.92
le-4 80 6.29 3.67 <+«

19



| Effects of data distribution on attention sink

* Unique training data amount
Attention sink emerges after LMs are trained on sufficient unique training
data, not really related to overfitting

Training data: 50M
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| Effects of on attention sink

C
 Auto-regressive loss L= logps(w|w<y)
t=2
L2 regularization
C /
*  Weight decay L= logpy(me|m<s) + 70l
t=2

Larger weight decay encourages attention sink

7y 0.0 0.001 0.01 0.1 0.5 1.0 20 5.0

Sink{(%) | 15.20 15.39 15.23 18.18 41.08 37.71 6.13 0.01
valid loss 3.72 3.72 3.72 3.73 3.80 390 423 524
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| Effects of on attention sink |
More prefix tokens
C
* Prefix language modeling L = Z log po(xt|Tps1.t—1, :1;‘1:19)/
t=p+1
Sink token shifts from the first position to other positions within the prefix

=P Prefix LM
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| Effects of on attention sink

C
* Shifted window attention L= logps(@il@i—ui—1)
: : t=2 : :
Attention sink appears on the absolute, not the relative first token

Key of the sink token is

Small window size mitigates attention sink trained to be distributed in
a different manifold
1.0

—

0.8
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| Effects of model architecture on attention sink

The following designs do not affect the emergence of attention sink
* Positional embeddings:including no positional embedding

* Pre-norm and post-norm transformer block structure

* Feed forward networks (FFNs) with different activation functions

* Number of attention heads, how to combine multiple heads



| Effects of model architecture on attention sink

Standard softmax attention in i -th head [-th block
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| Effects of model architecture on attention sink

Softmax attention with a learnable sink token (Xiao et al. 2024)

1 x[,h

Softmax <\/—d_h [qu,h

X1 L9 I3

x* 1 2 I3

T~

Learnable sink token

QKY for sink token
LT

LT

queries

7

SEESNE

keys

Sink on the learnable sink token

Xiao et al. Efficient Streaming Language Models with Attention Sinks. ICLR 2024

26



| Effects of model architecture on attention sink

Softmax attention with learnable KV biases (Sun et al. 2024)
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Sun et al. Massive activations in large language models. COLM 2024
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| Effects of model architecture on attention sink

Softmax attention with learnable K biases

1 T T 0— V biases are all zeros
Softmax [ —— l’h{ +l,h Lh }—l—M) [ J
(@ e x viel
PR
\ —
queries

Learnable K biases )

—

—

/

. . keys
Sink on the learnable K bias

28



| Effects of model architecture on attention sink

Softmax attention with learnable V biases (control group)
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| Effects of model architecture on attention sink

Hidden states’ L2-norm ratios between the first token and other tokens
Attention biases
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* LM with K biases has no massive activations!
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* Sink token saves extra attention, adjusts the Block

dependence among other tokens

Why need such a mechanism?
s it because attention score added up to one!? 30



| Effects of model architecture on attention sink

. k!
Attention output sim o)) — 1%,
90 qz 790 = €XP
— softmax

)

of =37 sim(¢(q;), 90(’?7))

j= 12 _1 sim(p(qg;

\Z_ZSHH ©0(q;),o(k;))

normalization term

v .

Perhaps normalization matters, as it forces the attention scores sum to one!
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| Effects of model architecture on attention sink

e Scale the normalization term

Z@' — Zz/()é

* Power of attention scores sum up to one

ol — 23:1 sim(p(q;), p(k;))v; : ot i eXp(\jZl_h?p)
1 ) > 7 : i qik;l_/
O ECAREIND =1\ X exp( 7
softmax

* May mitigate attention sink, but not prevent the emergence

==
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| Effects of model architecture on attention sink

Relax tokens’ inner dependence by removing normalization
Scale up to 1B LLMs

V)
~

Sigmoid attention:
T —e—Softmax
_‘_ k '918' —~—sigmoid,
p— ) 6:*3' w/0 norm.
vV dp £12
o
Z 6
ELU plus one attention: ~
T 0% 4 8§ 12 16 20

k
_ Z elu F1)v; Block

No normalization -> No attention sink, no massive activations!
Added back normalization -> Attention sink, massive activations!
33



| Effects of model architecture on attention sink

* Relax tokens’ inner dependence by allowing negative attention scores

Linear attention, with a mlp kernel

)
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,1> -> No attention sink, no massive activations



| Takeaway

* Attention sink is a widespread phenomena across models and input
* Attention sink emerges during the LM pre-training
* Attention sink acts as key biases, storing extra attention and non-informative

* Softmax plays an important role in the emergence of attention sink

Please check our paper to see more interesting results!
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