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Generative models

• The objective of generative models is to approximate the data distribution
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Unknown data distribution

• Then we can use generative models to generate new data

Generative mode



Representative generative models

• Diffusion models (DMs)
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Jonathon Ho et al. Denoising Diffusion Probabilistic Models. NeurIPS 2020. 



Representative generative models

• Auto-regressive models, such as language models (LMs)
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Alec Radford et al. Improving Language Understanding by Generative Pre-training. 2018.



Overview
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On memorization in diffusion models (TMLR 2025)
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Understanding behaviors of DMs

• Denoising score matching (DSM)

• This objective has a theoretical optimum! Really?
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Training sample



Understanding behaviors of DMs

• If we have the theoretical DM, do we really to train a model?

• The theoretical DM can only memorize training data
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Generated data

Training data

Theoretical DM SOTA DM



Understanding memorization in empirical DMs

• Why do the empirical DM not merely memorize training data like the theoretical one?

Carlini et al. found only 200-300 images are memorized based on 220 images generated by 

DDPMs

DDPMs are trained on CIFAR-10 (50K images) 
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Nicholas Carlini et al. Extracting Training Data from Diffusion Models. USENIX Security 2023.



Understanding memorization in empirical DMs

• Exploring the effects of training recipes on memorization
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Training recipe

Optimization

Data distribution

Model architecture

Conditions

DM training Memorization or not

Denoising score matching 



Understanding memorization in empirical DMs

• Conclusion I:  When data scale is smaller,  the fitting capability of model is stronger, 

the optimization is longer, memorization tends to happen in DMs

• Conclusion 2: Conditions can significantly induce the memorization

The reason why stable diffusion also shows obvious memorization even it was trained on 

billions of images
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When attention sink emerges in language models: an empirical 

view (ICLR 2025, spotlight)
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Understanding behaviors of LMs

• Decoder-only Transformer
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queries keys values

casual mask

Self-attention is one of the most important part



Understanding behaviors of LMs

• Decoder-only Transformer
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attention sink!

Xiao et al. Efficient Streaming Language Models with Attention Sinks. ICLR 2024 



Why attention sink is important

• Downstream applications of attention sink:

➢ KV cache optimization

➢ Inference acceleration

➢ Model quantization

➢ Long context …

Attention sink represents the redundancy in attention  
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When attention sink emerges in LMs

• Attention sink emerges during LM pre-training
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Training recipe

Optimization

Data distribution

Loss function

Model architecture

LM pre-training Attention sink or not?



Understanding attention sink

• Conclusion 1: Attention sink behaves as the key bias, sink token saves extra 

attention, adjusts the dependence among other tokens

• Conclusion 2: Attention sink is caused by normalization in softmax

Replacing softmax attention to sigmoid attention without normalization
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No Attention Sink



From interpretability to less redundant LLMs

• Attention sink represents the redundancy in attention

• Can we design a LLM architecture which was pre-trained to have no attention 

sink, which may be less redundant?
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Agent smith: A single image can jailbreak one million 

multimodal agents exponentially fast (ICML 2024)
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LLMs can be jailbroken
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• LLMs are typically aligned to generate helpful and harmless responses



LLM–based agents can be jailbroken
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Steal confidential data from 

iphones/PCs
Attack friendly force in a 

war

Purge humans

• With abilities to use tools, LLM-based agents may be jailbroken to



What if …
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• Imagine in the future, each person has a LLM-based agent as AI assistant, there 

will be billions of agents

• These AI assistants can communicate with each other
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Infectious jailbreak in a multi-agent system
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Infectious jailbreak in a multi-agent system

24

execute

execute

Code for purging humans



Infectious jailbreak in a multi-agent system
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Infectious jailbreak in a multi-agent system
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Infectious jailbreak in a multi-agent system
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Infectious jailbreak in a multi-agent system
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Infectious jailbreak in a multi-agent system
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We need to pay attention to AI safety
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• We find a very serious issue in AI safety: infectious jailbreak

• The exponential spread is both theoretically and empirically validated

What can we do? 



We need to pay attention to AI safety

31

• Pay attention to safety training when developing LLMs

• Detecting invalid user input when serving LLMs

…
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