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| am attempting to answer ...

Mechanism understanding of Attention Sink?
When Attention Sink Emerges in LLMs?

Why LLMs need Attention Sink?
Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?

Covered the following two papers

e When Attention Sink Emerges in Language Models: An Empirical View. ICLR 2025
e Why Do LLMs Attend to the First Token? COLM 2025



What is Attention Sink?

Decoder-only Transformer
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Self-attention is one of the most important parts
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What is Attention Sink?
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Xiao et al. Efficient Streaming Language Models with Attention Sinks. ICLR 2024
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Phenomenons associated to Attention Sink

e Massive Activations 400r =3
l 3201 N~
(" i = ) g 240 +hl1
1 =
F T, 160 —*hi,
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Network (FFN) R
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+ . .
o' Activations extremely
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Sun et al. Massive activations in large language models. COLM 2024



Phenomenons associated to Attention Sink

e Value Drains 1
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Gu et al. When Attention Sink Emerges in Language Models. ICLR 2025 6




Post-hoc Applications of Attention Sink

e Long context understanding / generation

e Only computing attention on the first
token and recent tokens

re
Attention Sink

N

< evicted L cached
tokens tokens

Xiao et al. Efficient Streaming Language Models with Attention Sinks. ICLR 2024 /



Post-hoc Applications of Attention Sink

o KV cache optimization

e Only retaining KV cache of sink tokens
and recent tokens

re
Attention Sink

N

< evicted L cached
tokens tokens

Ge et al. Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs. ICLR 2024 8



Post-hoc Applications of Attention Sink

e Model quantization

e Preserving the full precision of KV cache of sink token

LLaMA2-13B

Liu et al. IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact. ACL Findings 2024



Post-hoc Applications of Attention Sink

e Multimodal language modeling

1
2 : Normal tokens Current token Sink tokens
1
g : | Evicted tokens »—  Attention
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(d) Multimodal attention sink
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Yang et al. SEED-Story: Multimodal Long Story Generation with Large Language Model. Arxiv 2024
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| am attempting to answer ...

e Mechanism understanding of Attention Sink?

e When Attention Sink Emerges in LLMs?

e Why LLMs need Attention Sink?

e Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?
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Mechanism Understanding of Attention Sink

Attention sink is due to the key key bias of the sink token

Lhyl,h T Lhyl,h T
a; k7" > a0 ki,

100

cos(gh ", kY™ > cos(gh ", k;;)

key of the sink token is located in the different manifold, it has small angles with
any queries
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Mechanism Understanding of Attention Sink

Massive Activations

Feed Forward
Network (FFN)

Pre-LN

+
O l
Multi-Head Self-
Attention (MHSA)

Pre-LN /
. Lx)

Hl—l /

{5-norm

400~
{ [

3200 N~

240 —pl

160 —*—h!,

80

Y
"4 8 12 16 20 24 28 32
Block

Activations extremely
large

Few dimensions have
spikes/outliers

13



Mechanism Understanding of Attention Sink

Existence of massive activations is to support attention sink

Feed Forward
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dimensions (dominate the norm)
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Similar mechanism for small values
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Mechanism Understanding of Attention Sink

Why all these phenomenon tend to happen in the first token (not necessary to be
BOS)?

e Uniqueness of the first token: self-attention involves no other tokens, all
hidden states in the forward path are equivalent to MLP transformations of
input embeddings

e LLMslearnto map the input embeddings to massive activations after certain
layers, leading to key bias, and then attention sink

15



Mechanism Understanding of Attention Sink
e Attention sink approximates “no-op”
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| am attempting to answer ...

e Mechanism understanding of Attention Sink?

e When Attention Sink Emerges in LLMs?

e Why LLMs need Attention Sink?

e Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?
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A metric to measure Attention Sink

e Motivations: attention scores of the first token dominates

Smke—LZ Z]I
=1

/'/'

Average

= e e e = = = = == = = =y

——
- o o =

TN Atterltrl;nvikl]rgenle;clrlc of Within a head, a threshold
l to decide sink, e.g., 0.3 for
64 tokens

Importance l h
score oy, 8



Attention Sink w.r.t. Model Scale / Training Stage

e Attention sink emerges in small
LMs, even with 14M params.

Model scale

e Attention sink already emerges in
LM pre-training.

1007 " P Q»J . Sink$ (%)
< 80/ Base  Chat
= 60 GPT?

& 40! j‘j gﬁ‘a Mistral-7B 97.49 88.34
N + LLaMA2 LLaMA2'7B 92.47 92.88
20| LLaMA3 LLaMA2-13B | 91.69 90.94
O5oM  100M 1B 10B LLaMA3-8B | 99.02 98.85

Num. of param.
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Attention Sink w.r.t. Different Inputs

e Attention sink emerges with / e Under all the repeated tokens?
without BOS (for most LLMs), even
with random tokens as input

Sink{(%) -~~~ \
LM natural random : repeat |
GPT2-XL 7700 7029 | 62.28 !
Mistral-7B 97.49 75.21 | 0.00 |
LLaMA2-7B Base | 92.47 90.13 | 0.00 E
LLaMA3-8B Base | 99.02 91.23  0.00

—— o —

Related to positional embeddings



Attention Sink with Repeated Tokens as Inputs

e For LLMs with NOPE / Relative PE / ALiBi / Rotary
P=0

Residual streams before Transformer blocks

hOZZBWE+P
Then

h] =hy=---=hy

Using induction, we can prove (all have massive activations, distribute the sink)

hy=ht=.-..=hl, VO<I<L

21



Attention Sink with Repeated Tokens as Inputs

e \We can even derive the closed form / upper bound attention distributions for
NOPE / Relative PE / ALiBi / Rotary (see the paper).

e However, absolute / learnable PE (e.g., GPT2) have no such properties

Sink{ (%)
LM natural random repeat
GPT2-XL 77.00 70.29  62.28
Mistral-7B 97.49 73.21 0.00
LLaMA2-7B Base | 92.47 90.13 0.00
LLaMA3-8B Base | 99.02 91.23 0.00




When Attention Sink Emerges in LLMs?

e Attention sink appears during LLM pre-training

e Attributing attention sink phenomenon to LLM pre-training

Ex ~pua [ (P0(X))]

Data distribution Model architecture
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Effects of Optimization

e Attention sink appears during LLM pre-training process (not initialization)
e Large LR encourages attention sink (even under the same LR*steps)

Default setup

train loss —&— sink |
—#+— valid loss

0 4 8 12 16 20
Steps (k)

Train Loss
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Aed  —— le5
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7 L

8§ 16 24 32 40
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24 g
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12 &
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Effects of Data Distribution

Training data: S0M

train loss —&— sink *'

W
\ overfitting
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Training data: 100M
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Attention sink emerges when we have enough unique training data amount

Training data: 5B

i train loss —&— sink ’:
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OB NCN—100O—

e

Sink] (%)
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Effects of Loss function

Weight decay encourages attention sink ..
* J Y J L2 regularization

C /
2
L =Y logpy(mi|zs) + 76l
t=2
¥ 0.0 0.001 0.01 0.1 0.5 1.0 2.0 5.0

Sink{(%) | 15.20 1539 1523 18.18 41.08 37.71 6.13 0.01
validloss | 3.72 3.72 372 373 380 390 423 5.24
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Effects of Loss function

e Prefix language modeling: sink token shifts from the first token to other
positions within the prefix ¢

L = Z log pe (wtlmp—l—]_:t—17 wl:p)
» t=p+1

ns _ Prefix LM
200 . ° e samplel

<15 i

C W~ _

E 10 ¢ sampled

»n 5 sample5
0123456780910

Token positions “



Effects of Loss function

e Shift window attention: attention sink appears on the absolute, not the

relative first token
e Small window size mitigates attention sink

‘1.0 Validating sink token has

key bias
0.8 Y

C
0.6 L = Z log pg (wt|wt—w:t—1)

0.4 t=2

0.2
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Effects of Model Architecture

The following designs do not affect the emergence of attention sink
e Positional embeddings

NOPE, learnable PE, absolute PE, relative PE, Rotary, ALIBI

29



Effects of Model Architecture

The following designs do not affect the emergence of attention sink

Positional embeddings

Pre-norm or post-norm

/

Massive activations
happen before LN
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| Network (FFN)
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+
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|
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Effects of Model Architecture

The following designs do not affect the emergence of attention sink

Positional embeddings

Pre-norm or post-norm

FFNs with different activation functions

Number of attention heads, how to combine multiple heads

31



Effects of Model Attention Design

e Standard softmax attention

1 T :J
Softmax [ ——Q"“"K""" + M) vhh
< V dh Q A
"
T T I queries
—
queries keys values T
Casual mask —

A

Sink on the first token

keys
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Effects of Model Attention Design

e Softmax attention with a learnable sink token

1 AN
Softmax (— [q ,h] [k*l’hT Kl,hT]

Vdn

QKYV for sink token
£y T2 T3 -+ LT
x* 1y T2 I3 ce. T

T~

Learnable sink token

queries

A

Sink on the learnable
sink token

keys

33



Effects of Model Attention Design

e Softmax attention with learnable KV biases

)
*l,h e
—
Vl,h
—
queries
y
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Effects of Model Attention Design

e Softmax attention with learnable K biases

Softmax (WQl’h [k*l’h Kl’h ] + Vl’h —
h
—
queries
y—
Learnable K biases,
zero V biases —

/ keys

Sink on the learnable
key biases

35



Effects of Model Attention Design

e Softmax attention with learnable K biases (control group%

1

Softmax
(v

Qz,th,hT n M) Vbt g g*bh

queries

Learnable V biases

—
—

\[I

Sink on the first token,

no effects

keys
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Effects of Attention Biases

e Attention biases can absorb attention sink from the actual first token

Attention in each head Sink§ (%) Sinkj(%) valid loss
Softmax ( A-QURET 4 M) Yk i 18.18 3.73
*l h x[,h

Softmax ( [ Q' h] k*l,hT Kl,hT] + M) L"’ﬂ,h] 74.12 0.00 3.72
Sof Lh | gxl,h T LhT | v

oftmax Q k Kb | + M Vih 72.76 0.04 302
Softmax ( QL k*l hT o glhT| M) V?,h 73.34 0.00 3.72
Softmax ( QKM 4 M) Vih 4 g i 17.53 3.73
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Effects of Attention Biases

e Key biases can significantly mitigates massive activations, as no need to

develop new biases

o0
-

{5 -Norm Ratio

-

Attention biases

(O B )
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_._w*
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v

0

123456780910
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Effects of Attention Biases

e Value bias needs to be close to zero

[, h

v*° 0 v’ 5v’ 200’ v 50" 200"
Sink{ (%) | 73.34 70.03 44.43 1.51 69.74 27.99 0.00
Sink‘i (%) 0.00 0.06 3.71 25.88 2.15 593 11.21
valid loss 3.72 3.72 3.12 3.71 3.72 3.72 3.73

v’ =11,0,0,..,0]

v =11,1,1,..,1]/\/dn
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Effects of Attention Biases

e Key bias is low-rank

dq 1 2 4 8 16 32 64

Sink$ (%) | 32.18 30.88 3094 31.39 2330 5123 69.19
Sinkj(%) | 474 496 439 454 219 194 0.04
validloss | 3.73 3.72 372 373 373 3.73 3.72
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Comparing different Attention Biases

e Learnable key biases, zero value biases

1 Lh |5 xlh T ILhT 0
SoftmaX(MQ [k K }-I—M ybh

e Softmax off-by-one

1 T T 0
_ = a*l,h Lh z-1,h
Softmax (\/@ {0 Q"K ] + M) {‘ ,l,h]

e Learnable attention score biases (single number for each head, layer)

1 T T 0
R PR L,h ¢-l,h
Softmax (\/ﬁ [b Q"K ] + M) [Vl’h]

b = p*bh1,1,1, ., 1]
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Comparing different Attention Biases

e Softmax off-by-one: with any query, the cosine similarity is zero

1 T T 0
_ - xl,h lL,h r-1,h
Softmax (\/d_h [0 Q"K ] + M) [Vl’h]

. e Zero may already be enough
e Oiriginal format:

-0.50

exp(x;)
1+ jexp(x i)

0.25

(softmaxy (x)); =

0.00
—-0.25

—-0.50
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Effects of Attention Biases

The learnable key bias and zero value bias experiments show that:

e large attention score does not mean important in semantic
e Sink token save extra attention, adjusts the dependence among tokens

But why LLMs need such a mechanism?
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Effects of Normalization in Softmax Attention

Whether this is due to the normalization in Softmax attention?

o~ osim(p(@).o(k) N~ sim(p(a)e(k) o o
Z ;Z}:lsim(sO(qi),cp(kj')) ’ ;Z}:lsim(sf)(qi),sdkjf)) (W),
o} = Concat!L , (v;"\Wp.

Scaling the normalization Z;, — Z, /a . equivalent to scaling weight matrices,
and then scaling the LR, mitigates attention sink

Wt = W§ — nVws L(aW}) W5t = W5 — 0/ Vg, LIWS)
= W45 —anVw L(W)|w=oawg, =aW3 —n'VwL(W)lw=awy,
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Effects of Normalization in Softmax Attention

Power of sum to one: may mitigate attention sink but does not prevent, sensitive
to LR, large LR may incentivize attention sink

. sim(p(g;), ¢(k;))v; i a:k; ’
v;u: :J 1 3))V; , i exp( Th/p) .
t—1 sim(p(q;), (k)P )" vL i 9k, ?
(b sim(e(ay), (k)P =1\ X exp( 75 7)
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Effects of Normalization in Softmax Attention

e Removing the normalization in Softmax attention

Using sigmoid attention (exponential kernel in Softmax tends to explode)

1 T
Sigmoid (—Q”’Kl’h + M) vhh
Vdp

Or ELU plus one attention

No normalization -> No attention sink; add back - > attention sink
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Effects of Normalization in Softmax Attention

Other attention variants

sim(p(q;), ¢(k;)) Z; Sink{(%) valid loss
aik] i aik )
exp( \/ﬂ)kT Zj/:ﬁXP(ﬁ) 18.18 3.73
sigmoid(Z£=21) 1 0.44* 3.70
s1gm01dT( \/E) > =1 sigmoid (% \/E ) 30.24 3.74
ik, «
elu( Vi, )+1 1 . 0.80 3.69
ik 1 q;
elu(q\'/—)+1 > ii—p€lu (\/_)+1 5 _
(elu(qi)+1) (elu(k;)+1) 7 i (el(ga)+1)(elu(k;)+1) " "
Moo S, e 53.65 4.19
(elu(go)+1)(elulk;)+D) T | 4 ] ]
Vdn
aik’ (N  a@rkl| .\
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| am attempting to answer ...

e Mechanism understanding of Attention Sink?

e When Attention Sink Emerges in LLMs?

e Why LLMs need Attention Sink?

e Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?
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LLMs need attention sink to prevent over-mixing

e Attention blocks try to mix representations
e Attention sink serves as a mechanism to prevent over-mixing (see the paper
for theory, longer context needs stronger mechanism)
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Layer

LLMs need attention sink to prevent over-mixing

With attention sink, perturbation on one token (“greatest”->"best”) won't change

token representations a lot
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Attention sink implements “no-op”

e Attention sink approximates “no-op”: either sharply to attend one important
token or attend to the first token

e From the representation mixing perspective, LLMs need “no-op” to prevent
over-mixing

Attention Heatmap (<bos>)

<bos> 1.0
?: ,i Hellci

.I. ' 0.8
v, = E Q;jV; = QU1+ Slaij D) “ o y
]:1 J#l welf '0.6'%_)
“:’h"t »0.45
5 g

Small re B 0.2

................. — 0.0
I T N LN e .



Interpreting attention variants using “no-op”

Sigmoid attention allows approximate 5l

zero attention

Sigmoid (

1
v

Ql,th,hT n M) yhh

¢P(z) =

14+e 2
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Interpreting attention variants using “no-op”

The following linear attention could have all zero attention scores

—— o e e o o —

Vidn

sim(p(q;), p(k;)) Z; Sink3(%) valid loss
Qik;'r (3 q; ;—/
XPCva) ) 1818 373
Qik;r i Qik;—/ "\
i max 23/21 i | 1) , 3 |
e 1 0.00* 399
mip(g:)mlp(k;) " i mip(g;)mip(k;/) " * '
nlp max (| 355, "R 1) | 019 385 !
mip(g:)mip(k;) " 1 0.74* 3.91 ;
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When Attention Sink Attaches to <BOS>

Data packing (fixed <BOS> in the first position will have similar behavior as

Gemma)

= Y
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b= - - - gl
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._ - A '

3 3

1 I
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I |

= Context length ———"
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Attention sink / “No-op” widely exists in Transformer family

Attention sink

LLaMA

BERT
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e Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?
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GPT-0OSS adopts Attention Biases

e Learnable key biases, zero value biases

1 Lh |, 1,k T LhT 0
Softmax(\/EQ [k K ]-I—M yhh

e Softmax off-by-one

1 T T 0
= a*l,h Lh z-1,h
Softmax (x/cTh {0 Q"K ] + M) {‘ ,l,h]

e Learnable attention score biases (single number for each head, layer)

1 T T 0
R PR L,h ¢-l,h
Softmax (\/d_h [b Q"K ] + M) [Vl’h]

b = p*bh1,1,1, ., 1]
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|

GPT-OSS adopts Attention Biases

The first token does not to develop strong
attention sink, thus mitigating massive
activations/outliers

Benefits 1. facilitate quantization, pre-training
stability

Pinned

Xiangming Gu & @gu xiangming - Aug 6 I e
I noticed that @OpenAl added learnable bias to attention logits before
softmax. After softmax, they deleted the bias. This is similar to what | have
done in my ICLR2025 paper: openreview.net/forum?id=78Nn4....

| used learnable key bias and set corresponding value bias zero. In this way,
Show more

Attention biases

e, M) yvih

k*l.hT K[./IT:l +M) [ s
*l

v
Vl.h
v*bh
Vl.h

0
Vl.h

hT KI.’IT] + M)
hT KI.IzT] o M)

r + M) Vl.h e v*IJI,

@ OpenAl .+ @0OpenAl - Aug 6

Our open models are here.
Both of them.

openai.com/open-models

@ 22 185 ¥ 17K ihi 276K A

>
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GPT-0OSS adopts Attention Biases

e Attention sink only happens in absolute first token, 1.0
not relative first token 0.8
0.6
: : : 0.4
e Tokens beyond window size have no sinks to attend,
No 0.2
possible over-mixing Sink

L Lh |, xlh T ILh T 0
Softmax(mQ [k K }-I—M yih

e Facilitate long context, especially in LLMs with alternative shifted window / full
attention o



Xiaomi MiMo-V2-Flash adopts Attention Biases

Attention biases work both on language modeling and long context scenarios

General LLM
benchmarks

Long-context
benchmarks

Reasoning
benchmarks

Model

MMLU BBH TriviaQA GSM8K MATH CMMLU MBPP

All GA

573 54.7 53.2 34.2 9.5 50.3 54.7

Hybrid SWA(W =128, w/osink) 54.9 524 52.8 36.9 8.9 - .
Hybrid SWA(W =128, w/ sink) 58.3 56.1 53.7 36.9 10.3 53.3 56.3
Hybrid SWA(W =512, w/ sink) 58.3 549 54.9 37.9 10.0 52.3 53.2

Model GSM-Infinite NoLiMa RULER-32k MRCR

All GA 12.3 49.7 894 32,5

Hybrid SWA(W = 128, w/ sink) 17.3 51.2 89.4 34.4

Hybrid SWA(W = 512, w/ sink) 172 38.5 84.7 19.6

Model AIME24/25 LiveCodebench GPQA-Diamond Average
All GA 45.5 40.0 41.7 42.4
Hybrid SWA(W = 128, w/ sink) 47.1 43.9 48.1 46.3

60



Qwen3-Next adopts Gated Attention

1

/ h
Transformations

of inputs

Sigmoid gate allows “no-op”, no need to No attention sink, massive activations,
only rely on attention sink for “no-op” better long context, pre-training stability

Zihan et al. Gated Attention for Large Language Models: Non-linearity, Sparsity, and
Attention-Sink-Free. NeurlPS 2025 Best Paper Award
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Google DeepMind 3590 Allab

Thank you for listening!
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