

Google DeepMind



# Demystifying **Attention Sink** in LLMs and its Applications to **Architecture Design**

Presenter: **Xiangming Gu**

Affiliation: Google Deepmind, National University of Singapore

# I am attempting to answer ...

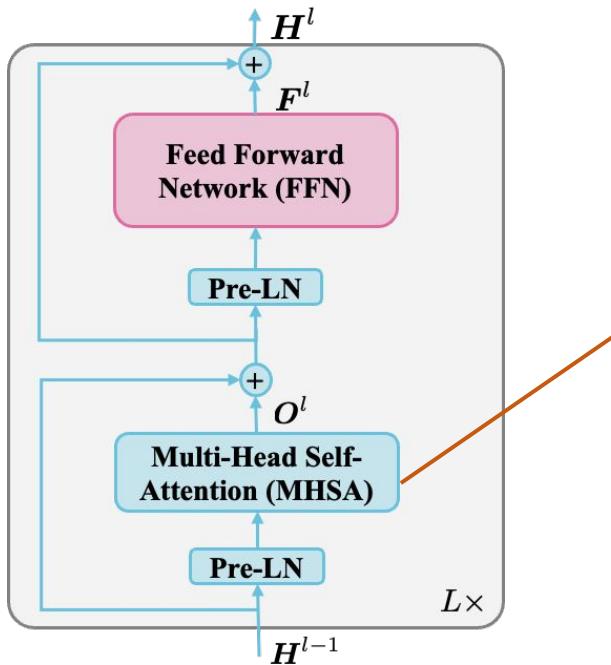
- Mechanism understanding of Attention Sink?
- When Attention Sink Emerges in LLMs?
- Why LLMs need Attention Sink?
- Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?

Covered the following two papers

- When Attention Sink Emerges in Language Models: An Empirical View. ICLR 2025
- Why Do LLMs Attend to the First Token? COLM 2025

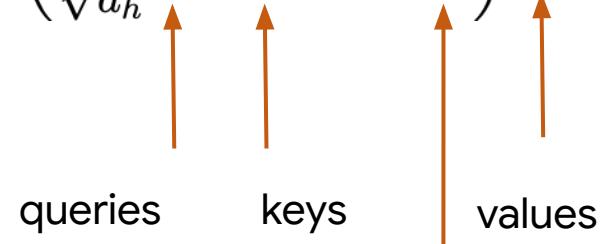
# What is Attention Sink?

- Decoder-only Transformer



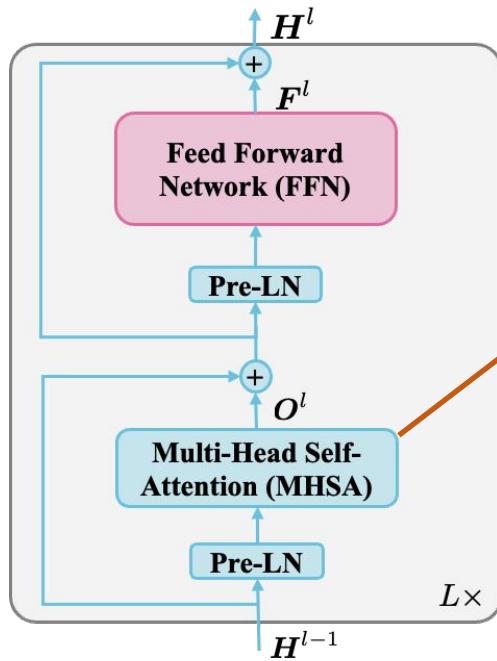
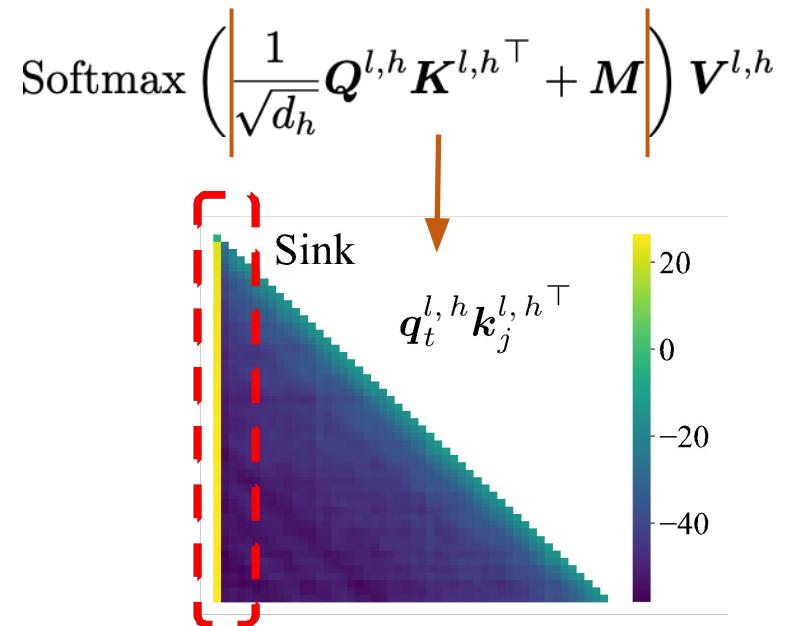
Self-attention is one of the most important parts

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h}$$



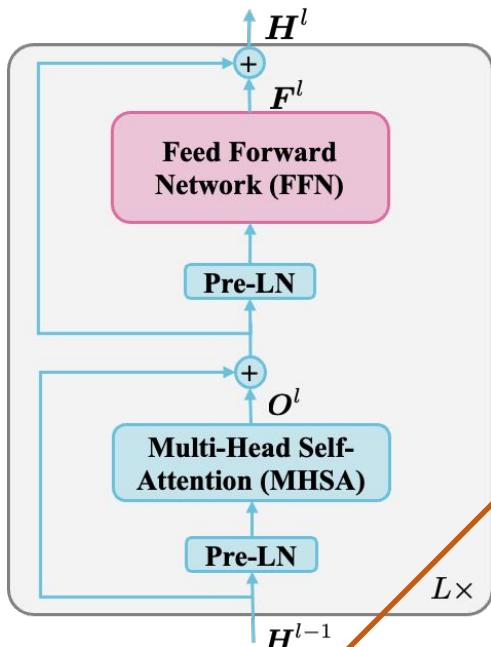
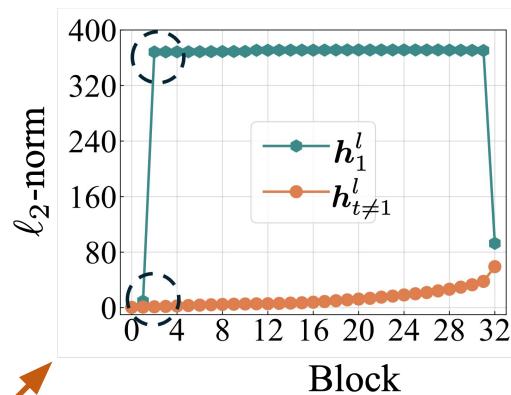
Casual mask

# What is Attention Sink?

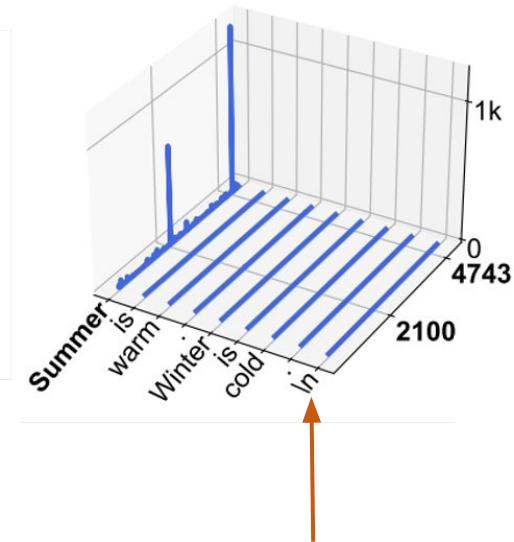


# Phenomenons associated to Attention Sink

- Massive Activations

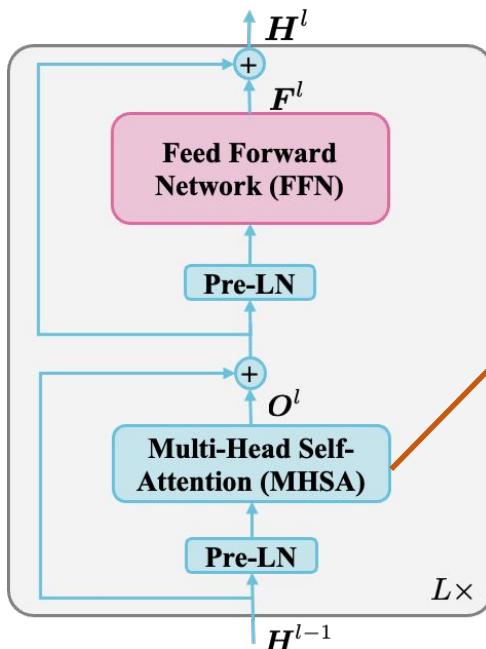


Activations extremely large



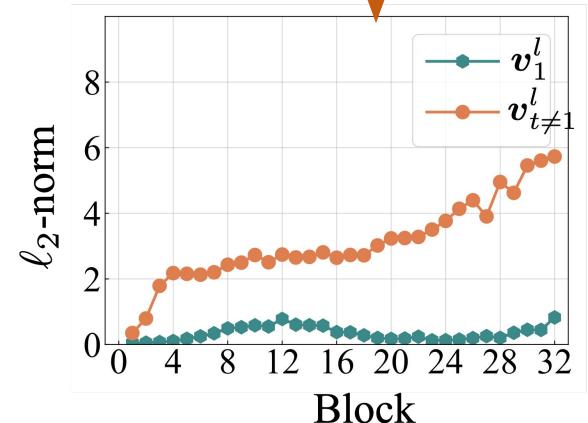
# Phenomenons associated to Attention Sink

- Value Drains



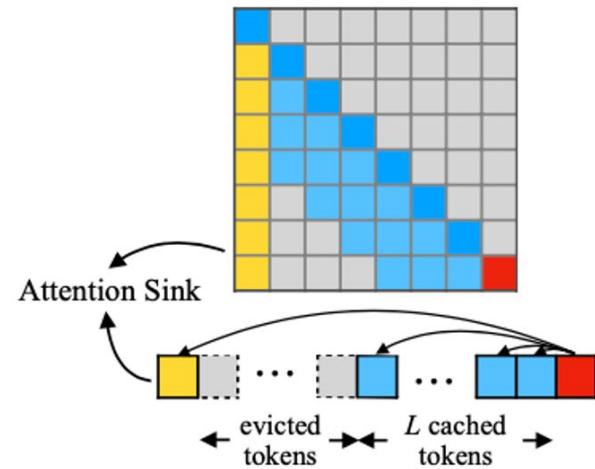
$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h}$$

Values extremely small



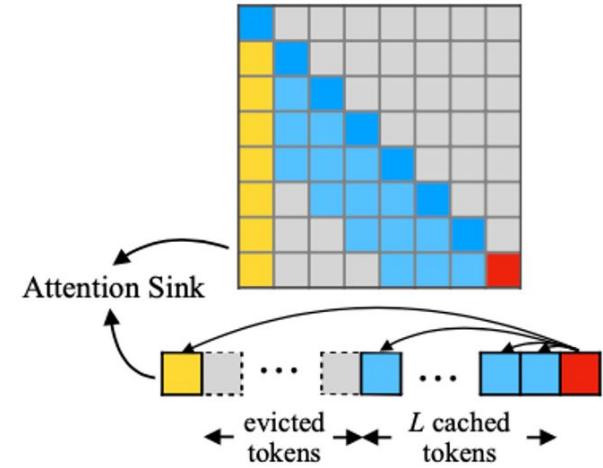
# Post-hoc Applications of Attention Sink

- Long context understanding / generation
- Only computing attention on the first token and recent tokens



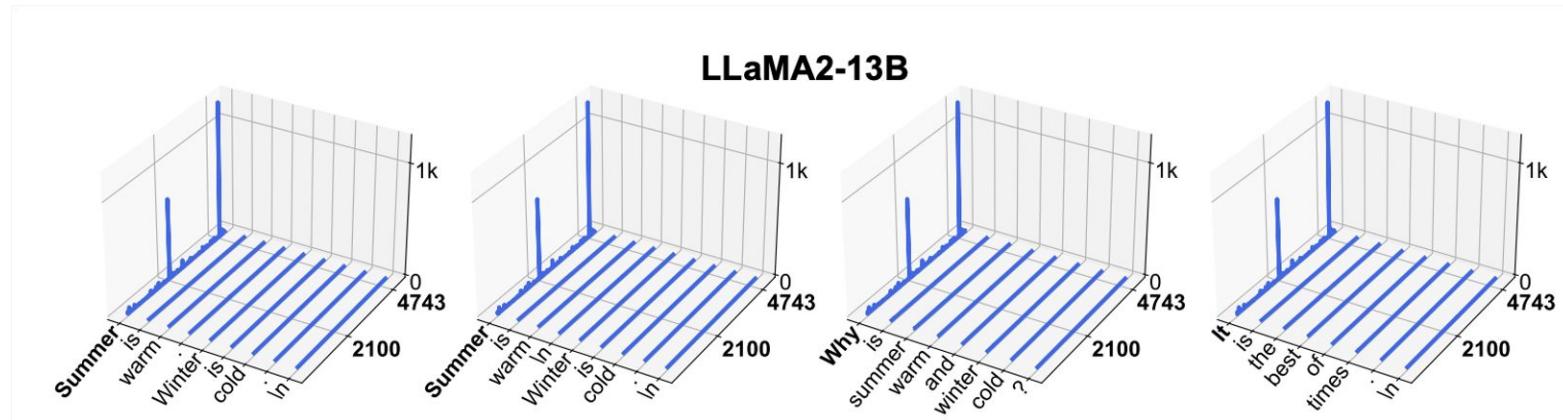
# Post-hoc Applications of Attention Sink

- KV cache optimization
- Only retaining KV cache of sink tokens and recent tokens



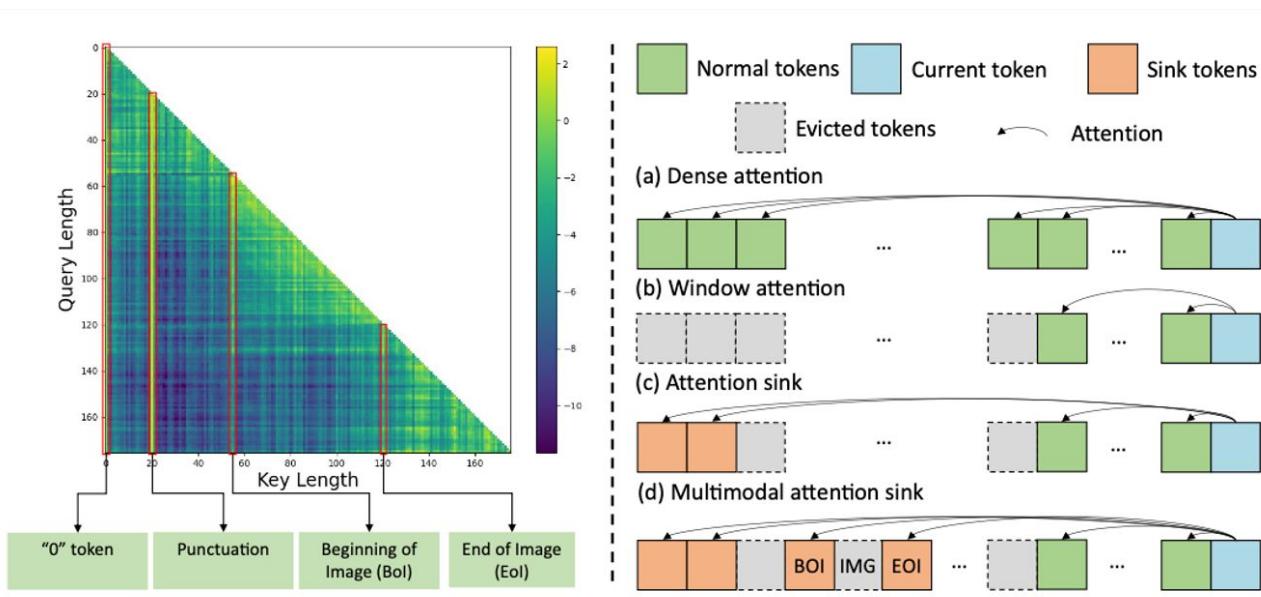
# Post-hoc Applications of Attention Sink

- Model quantization
- Preserving the full precision of KV cache of sink token



# Post-hoc Applications of Attention Sink

- Multimodal language modeling



I am attempting to answer ...

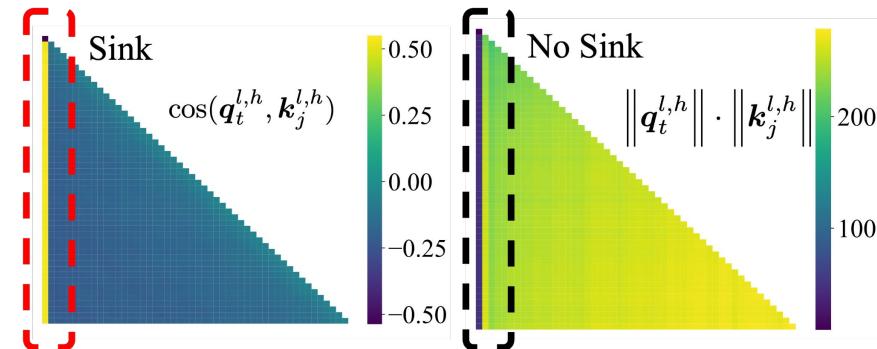
- Mechanism understanding of Attention Sink?
- When Attention Sink Emerges in LLMs?
- Why LLMs need Attention Sink?
- Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?

# Mechanism Understanding of Attention Sink

Attention sink is due to the key **key** bias of the sink token

$$\mathbf{q}_t^{l,h} \mathbf{k}_1^{l,h}^\top \gg \mathbf{q}_t^{l,h} \mathbf{k}_{j \neq 1}^{l,h}^\top$$

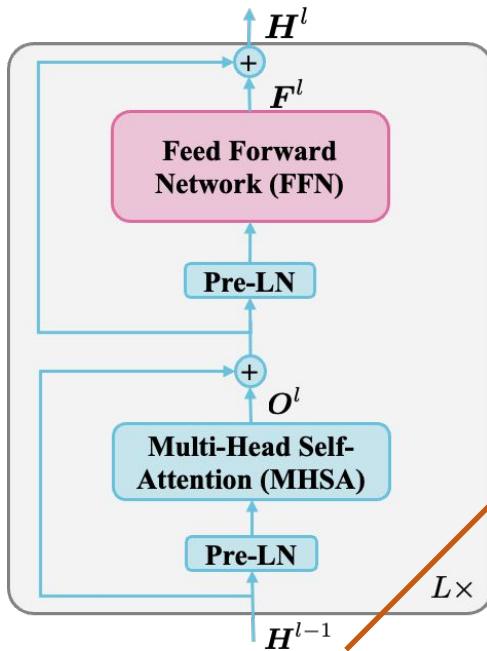
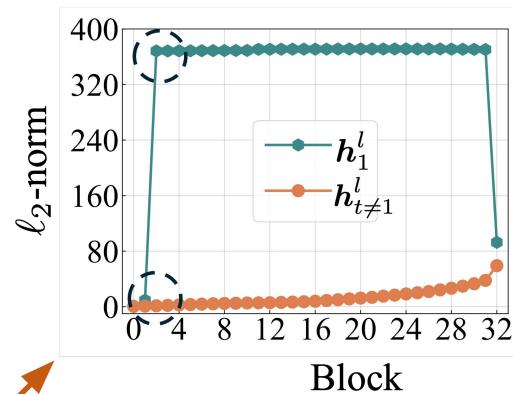
$$\cos(\mathbf{q}_t^{l,h}, \mathbf{k}_1^{l,h}) \gg \cos(\mathbf{q}_t^{l,h}, \mathbf{k}_{j \neq 1}^{l,h})$$



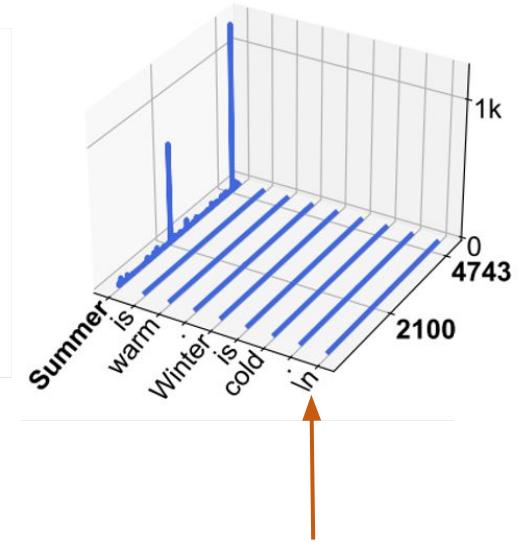
**key** of the sink token is located in the different manifold, it has small angles with any queries

# Mechanism Understanding of Attention Sink

- Massive Activations



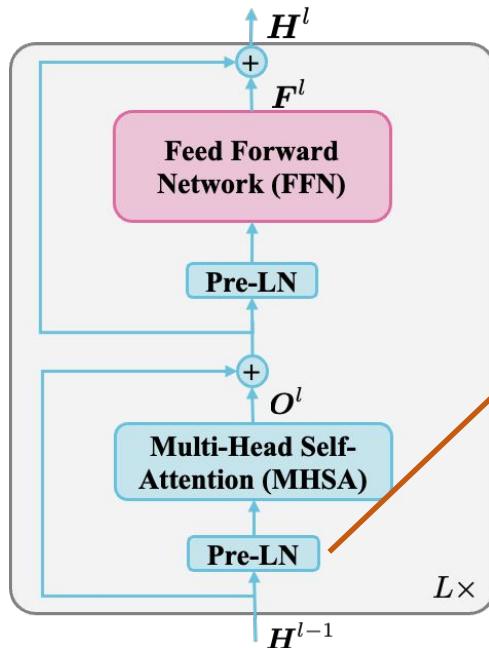
Activations extremely large



Few dimensions have spikes/outliers

# Mechanism Understanding of Attention Sink

- Existence of massive activations is to support attention sink



$$\text{LN}(\mathbf{h}) = \frac{\mathbf{h}}{\sqrt{\frac{1}{d} \sum_{i=1}^d \mathbf{h}_i^2}} \odot \mathbf{g}$$

Layer Norm only retain the spike dimensions (dominate the norm)

$$\mathbf{k}_t^{l,h} = \text{LN}(\mathbf{h}_t^{l-1}) \mathbf{W}_K^{l,h} \mathbf{R}_{\Theta, -t}$$

Linear transformations of spikes

Similar mechanism for small values

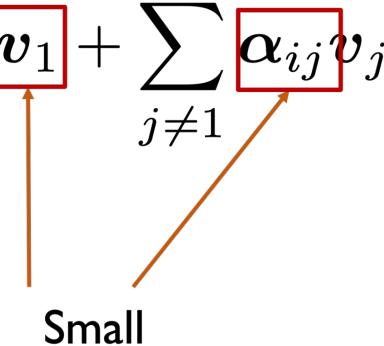
# Mechanism Understanding of Attention Sink

Why all these phenomenon tend to happen in the first token (not necessary to be BOS)?

- **Uniqueness of the first token:** self-attention involves no other tokens, all hidden states in the forward path are equivalent to MLP transformations of input embeddings
- LLMs learn to map the input embeddings to massive activations after certain layers, leading to key bias, and then attention sink

# Mechanism Understanding of Attention Sink

- Attention sink approximates “no-op”

$$\mathbf{v}_i^\dagger = \sum_{j=1}^i \alpha_{ij} \mathbf{v}_j = \alpha_{i1} \boxed{\mathbf{v}_1} + \sum_{j \neq 1}^i \boxed{\alpha_{ij}} \mathbf{v}_j$$


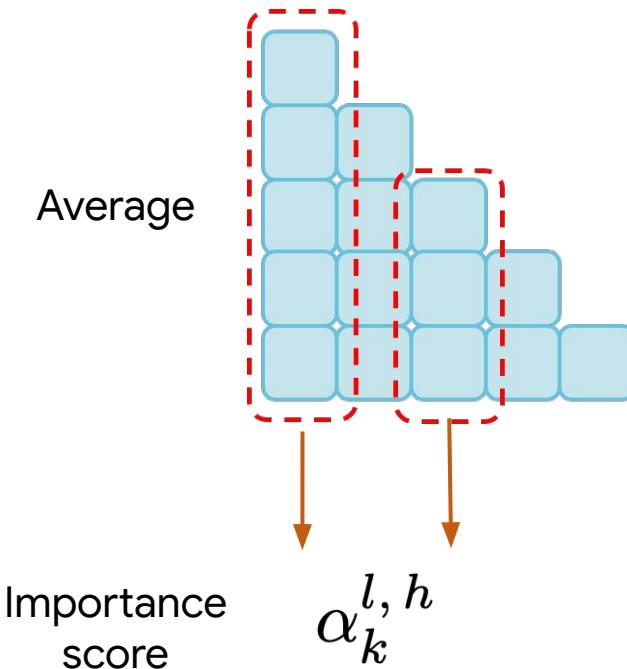
Small

I am attempting to answer ...

- Mechanism understanding of Attention Sink?
- When Attention Sink Emerges in LLMs?
- Why LLMs need Attention Sink?
- Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?

# A metric to measure Attention Sink

- Motivations: attention scores of the first token dominates



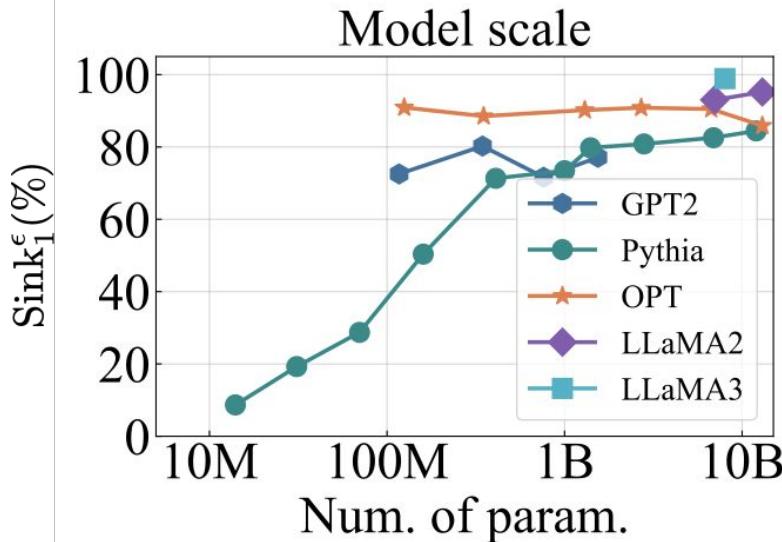
$$\text{Sink}_k^\epsilon = \frac{1}{L} \sum_{l=1}^L \frac{1}{H} \sum_{h=1}^H \mathbb{I}(\alpha_k^{l, h} > \epsilon)$$

Attention sink metric of the whole LM

Within a head, a threshold to decide sink, e.g., 0.3 for 64 tokens

# Attention Sink w.r.t. Model Scale / Training Stage

- Attention sink emerges in small LMs, even with 14M params.
- Attention sink already emerges in LM pre-training.



| LLM        | Sink $_{1}^{\epsilon}$ (%) |       |
|------------|----------------------------|-------|
|            | Base                       | Chat  |
| Mistral-7B | 97.49                      | 88.34 |
| LLaMA2-7B  | 92.47                      | 92.88 |
| LLaMA2-13B | 91.69                      | 90.94 |
| LLaMA3-8B  | 99.02                      | 98.85 |

# Attention Sink w.r.t. Different Inputs

- Attention sink emerges with / without BOS (for most LLMs), even with random tokens as input
- Under all the repeated tokens?

| LLM            | natural | $\text{Sink}_1^\epsilon(\%)$<br>random | repeat |
|----------------|---------|----------------------------------------|--------|
| GPT2-XL        | 77.00   | 70.29                                  | 62.28  |
| Mistral-7B     | 97.49   | 75.21                                  | 0.00   |
| LLaMA2-7B Base | 92.47   | 90.13                                  | 0.00   |
| LLaMA3-8B Base | 99.02   | 91.23                                  | 0.00   |

Related to positional embeddings

# Attention Sink with Repeated Tokens as Inputs

- For LLMs with NOPE / Relative PE / ALiBi / Rotary

$$\mathbf{P} = \mathbf{0}$$

Residual streams before Transformer blocks

$$\mathbf{h}_t^0 = \mathbf{x} \mathbf{W}_E + \mathbf{P}$$

Then

$$\mathbf{h}_1^0 = \mathbf{h}_2^0 = \cdots = \mathbf{h}_T^0$$

Using induction, we can prove (all have massive activations, distribute the sink)

$$\mathbf{h}_1^l = \mathbf{h}_2^l = \cdots = \mathbf{h}_T^l, \quad \forall \ 0 \leq l \leq L$$

# Attention Sink with Repeated Tokens as Inputs

- We can even derive the closed form / upper bound attention distributions for NOPE / Relative PE / ALiBi / Rotary (see the paper).
- However, absolute / learnable PE (e.g., GPT2) have no such properties

| LLM            | Sink <sub>1</sub> <sup>ε</sup> (%) |        |        |
|----------------|------------------------------------|--------|--------|
|                | natural                            | random | repeat |
| GPT2-XL        | 77.00                              | 70.29  | 62.28  |
| Mistral-7B     | 97.49                              | 75.21  | 0.00   |
| LLaMA2-7B Base | 92.47                              | 90.13  | 0.00   |
| LLaMA3-8B Base | 99.02                              | 91.23  | 0.00   |

# When Attention Sink Emerges in LLMs?

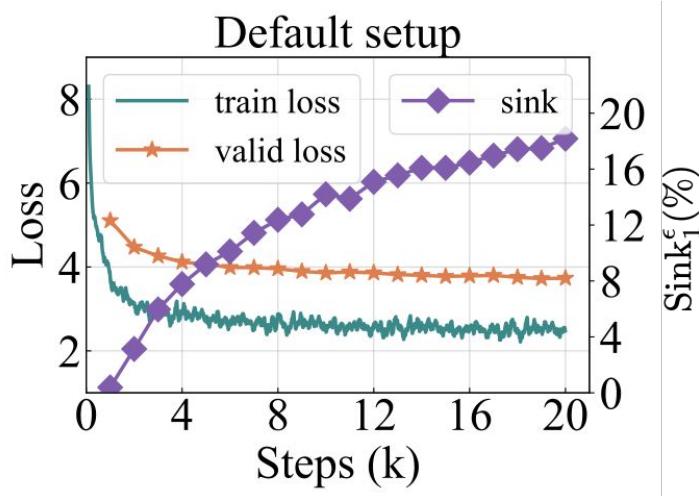
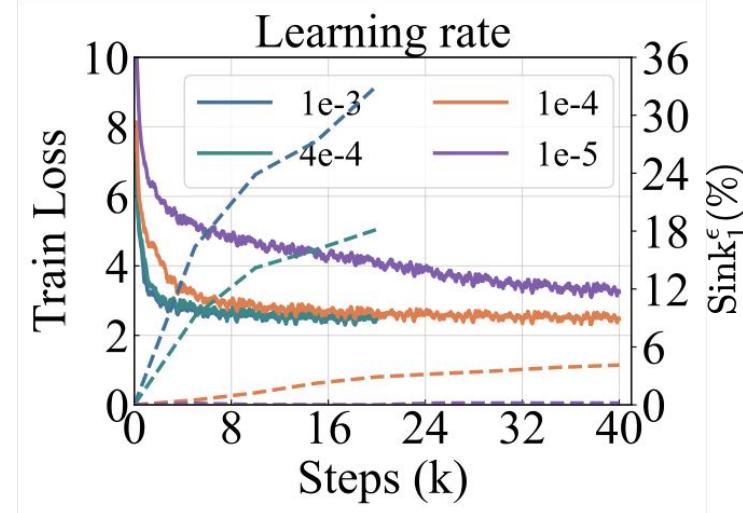
- Attention sink appears during LLM pre-training
- Attributing attention sink phenomenon to LLM pre-training

$$\min_{\theta} \mathbb{E}_{\mathbf{X} \sim p_{\text{data}}} [\mathcal{L}(p_{\theta}(\mathbf{X}))]$$

Optimization Data distribution Loss function Model architecture

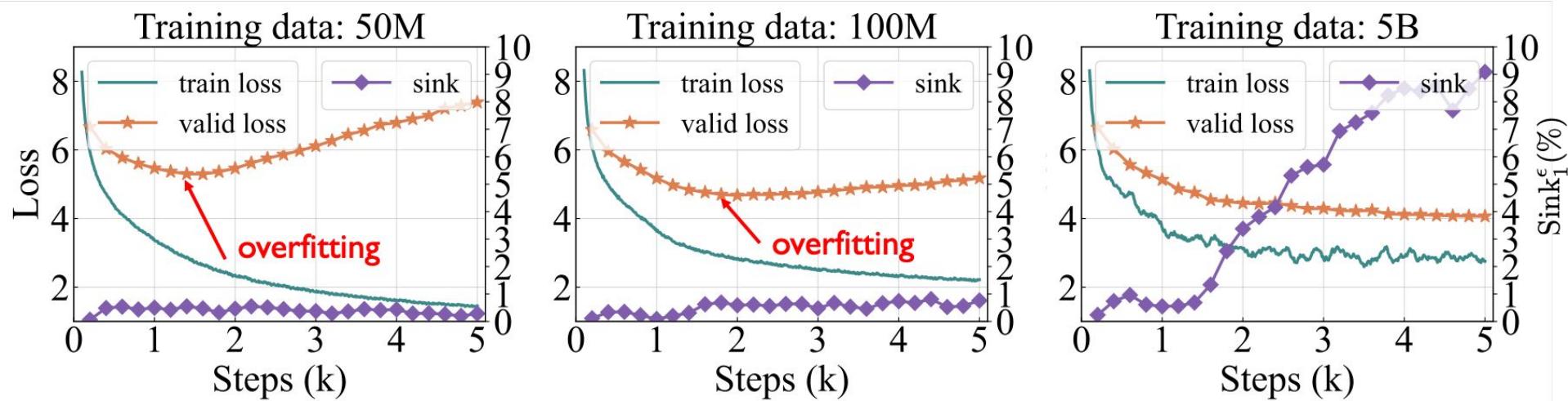
# Effects of Optimization

- Attention sink appears during LLM pre-training process (not initialization)
- **Large LR** encourages attention sink (even under the same  $LR^*steps$ )



# Effects of Data Distribution

- Attention sink emerges when we have enough unique training data amount



# Effects of Loss function

- Weight decay encourages attention sink

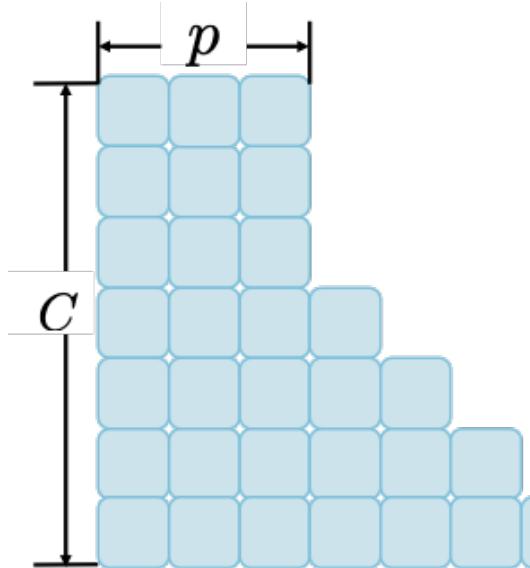
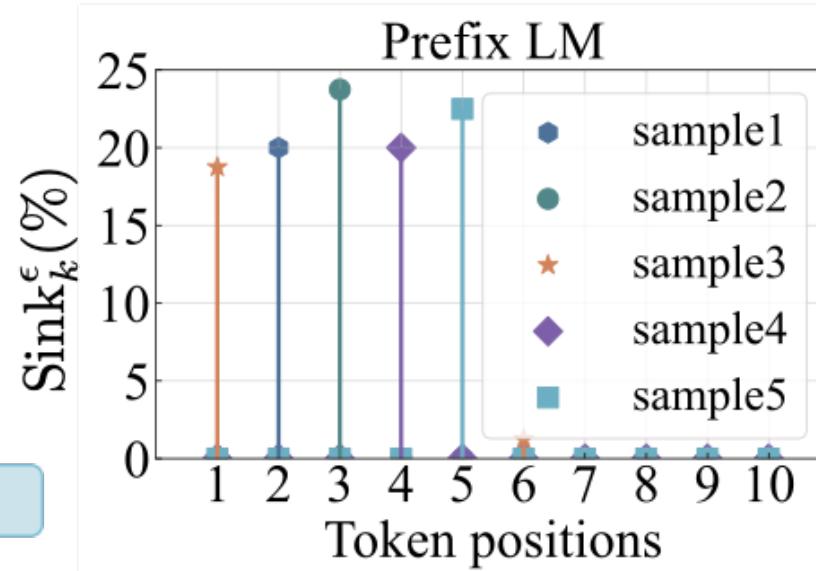
$$\mathcal{L} = \sum_{t=2}^C \log p_{\theta}(\mathbf{x}_t | \mathbf{x}_{<t}) + \gamma \|\theta\|_2^2$$

L2 regularization

| $\gamma$                       | 0.0   | 0.001 | 0.01  | 0.1   | 0.5   | 1.0   | 2.0  | 5.0  |
|--------------------------------|-------|-------|-------|-------|-------|-------|------|------|
| $\text{Sink}_1^{\epsilon}(\%)$ | 15.20 | 15.39 | 15.23 | 18.18 | 41.08 | 37.71 | 6.13 | 0.01 |
| valid loss                     | 3.72  | 3.72  | 3.72  | 3.73  | 3.80  | 3.90  | 4.23 | 5.24 |

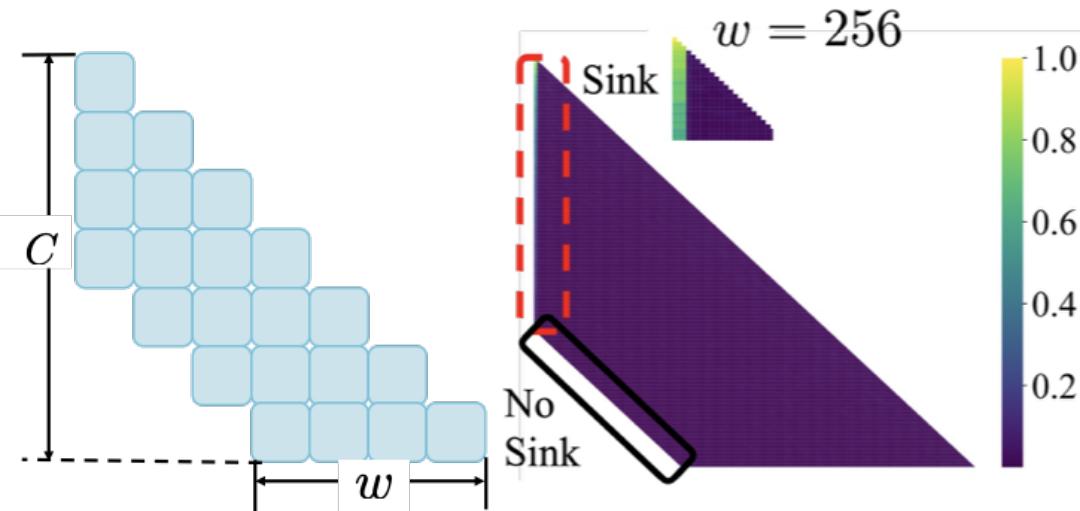
# Effects of Loss function

- **Prefix language modeling**: sink token shifts from the first token to other positions within the prefix



# Effects of Loss function

- Shift window attention: attention sink appears on the **absolute, not the relative first token**
- Small window size mitigates attention sink



Validating sink token has key bias

$$\mathcal{L} = \sum_{t=2}^C \log p_{\theta}(\mathbf{x}_t | \mathbf{x}_{t-w:t-1})$$

# Effects of Model Architecture

The following designs do not affect the emergence of attention sink

- Positional embeddings

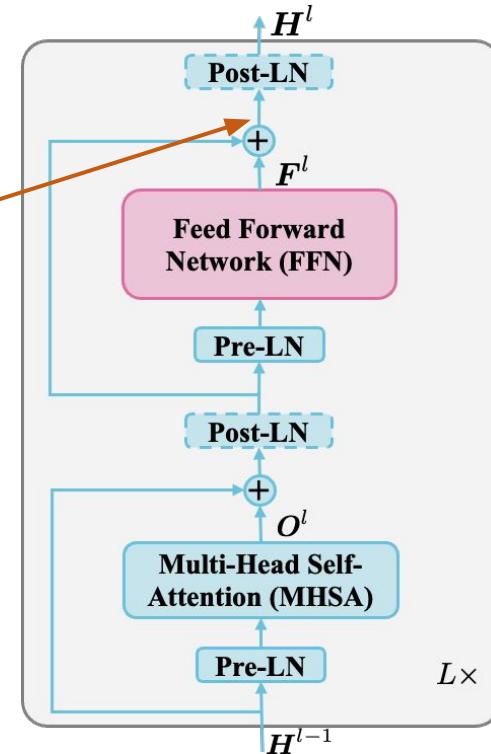
NOPE, learnable PE, absolute PE, relative PE, Rotary, ALIBI

# Effects of Model Architecture

The following designs do not affect the emergence of attention sink

- Positional embeddings
- Pre-norm or post-norm

Massive activations  
happen before LN



# Effects of Model Architecture

The following designs do not affect the emergence of attention sink

- Positional embeddings
- Pre-norm or post-norm
- FFNs with different activation functions
- Number of attention heads, how to combine multiple heads
- ...

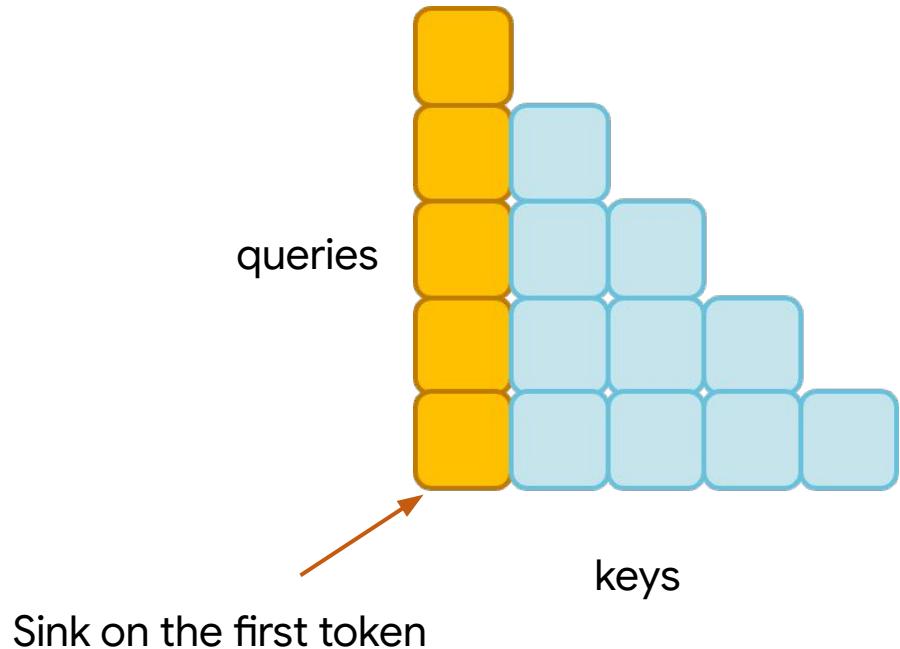
# Effects of Model Attention Design

- Standard softmax attention

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h}$$

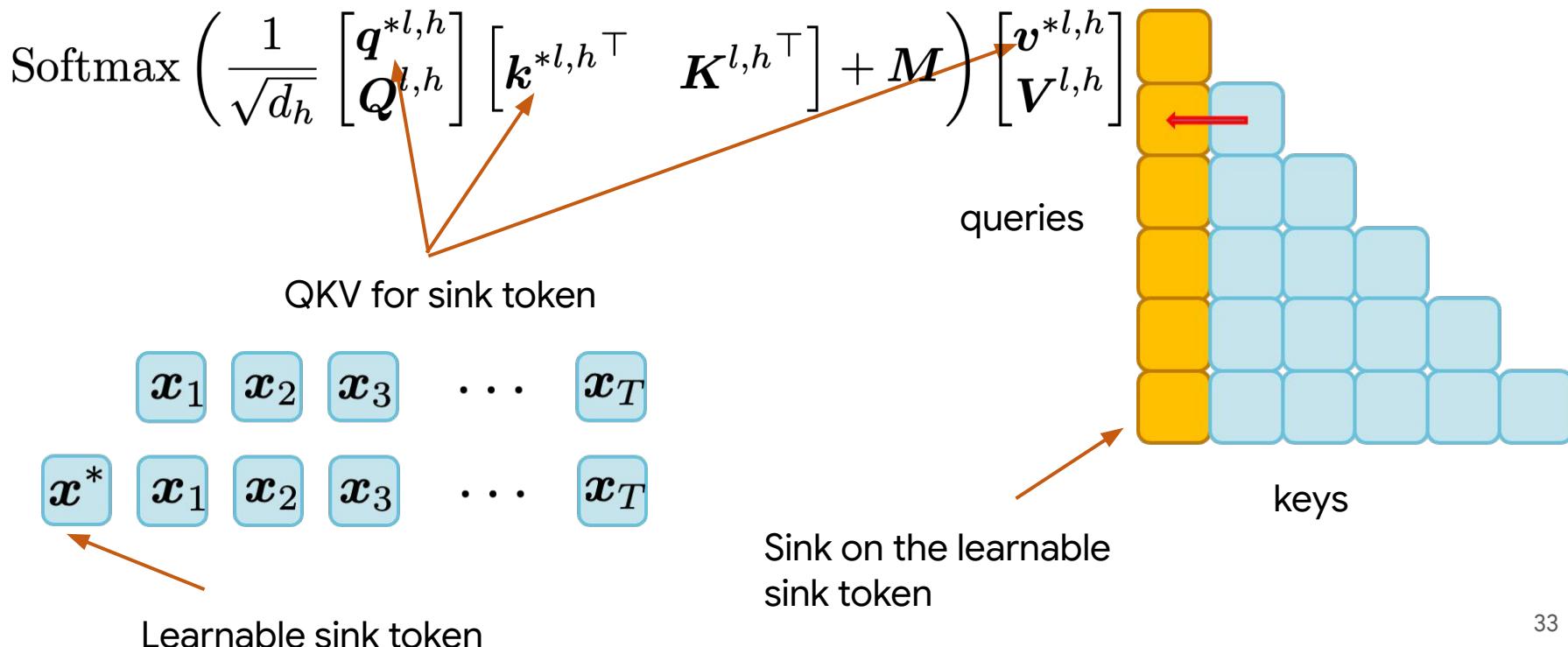
queries      keys      values

Causal mask



# Effects of Model Attention Design

- Softmax attention with a **learnable sink token**

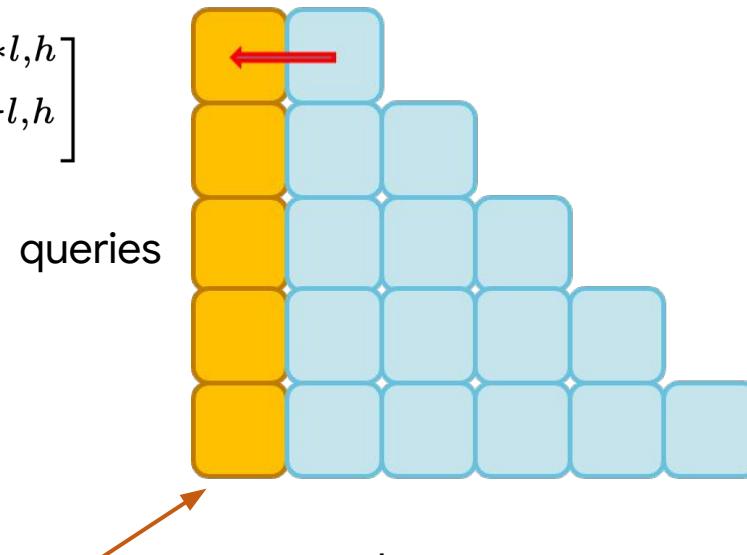


# Effects of Model Attention Design

- Softmax attention with **learnable KV biases**

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} Q^{l,h} \begin{bmatrix} k^{*l,h}^\top & K^{l,h}^\top \end{bmatrix} + M \right) \begin{bmatrix} v^{*l,h} \\ V^{l,h} \end{bmatrix}$$

Learnable KV biases



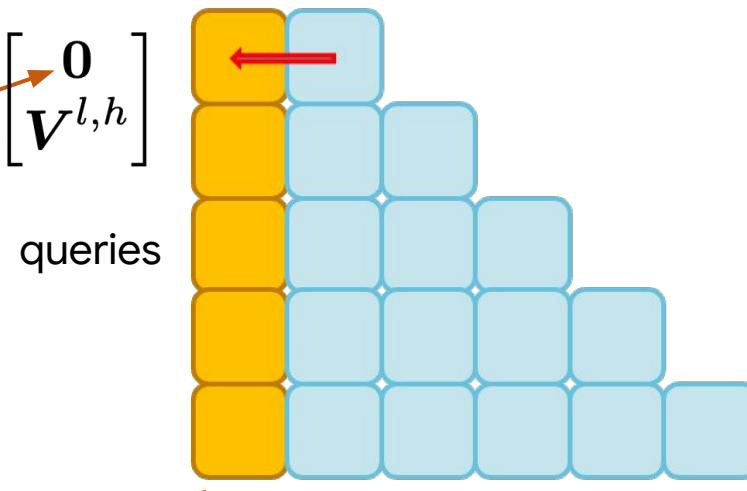
Sink on the learnable K  
biases

# Effects of Model Attention Design

- Softmax attention with **learnable K biases**

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} Q^{l,h} \begin{bmatrix} k^{*l,h^\top} & K^{l,h^\top} \end{bmatrix} + M \right) \begin{bmatrix} \mathbf{0} \\ V^{l,h} \end{bmatrix}$$

Learnable K biases,  
zero V biases



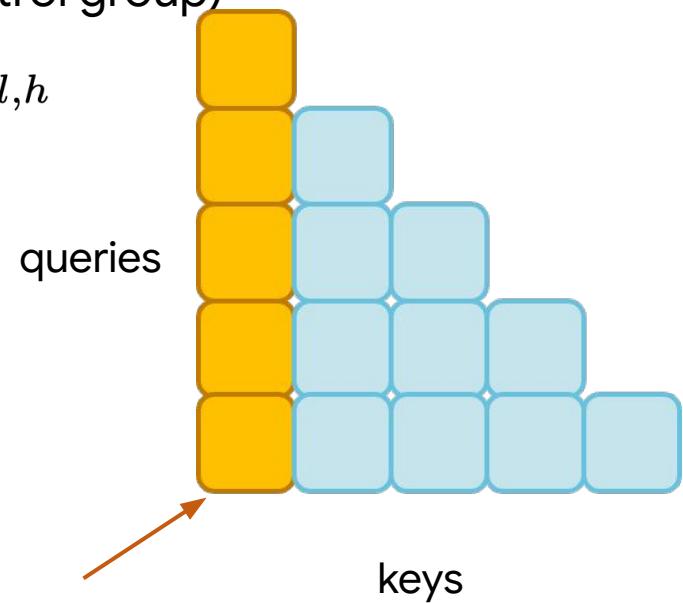
Sink on the learnable  
key biases

# Effects of Model Attention Design

- Softmax attention with **learnable K biases** (control group)

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h} + \mathbf{v}^{*l,h}$$

Learnable V biases



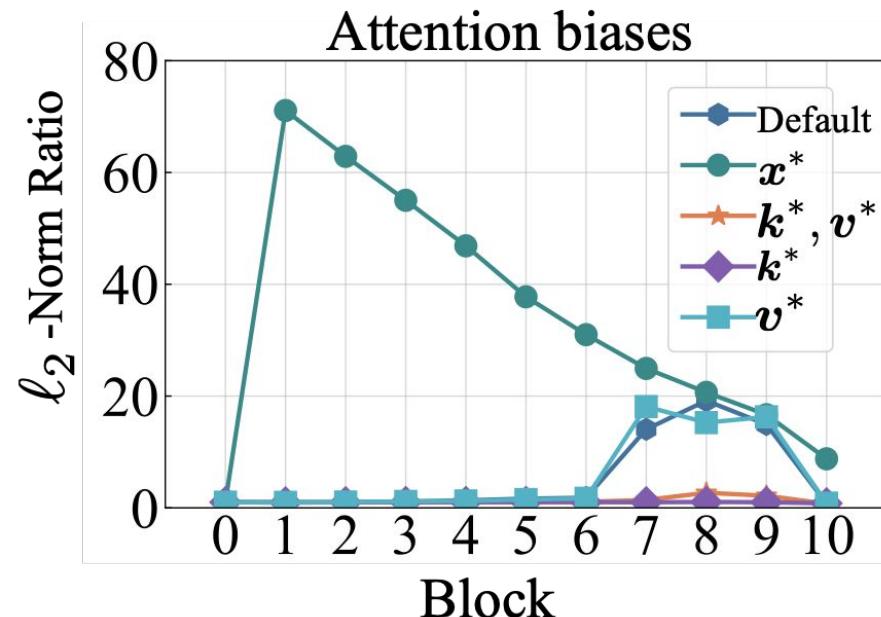
# Effects of Attention Biases

- Attention biases can absorb attention sink from the actual first token

| Attention in each head                                                                                                                                                                                                                                                          | Sink <sub>*</sub> <sup>ε</sup> (%) | Sink <sub>1</sub> <sup>ε</sup> (%) | valid loss |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------|
| Softmax $\left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h}$                                                                                                                                                              | -                                  | 18.18                              | 3.73       |
| Softmax $\left( \frac{1}{\sqrt{d_h}} \begin{bmatrix} \mathbf{q}^{*l,h} \\ \mathbf{Q}^{l,h} \end{bmatrix} \begin{bmatrix} \mathbf{k}^{*l,h \top} & \mathbf{K}^{l,h \top} \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{v}^{*l,h} \\ \mathbf{V}^{l,h} \end{bmatrix}$ | 74.12                              | 0.00                               | 3.72       |
| Softmax $\left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \begin{bmatrix} \mathbf{k}^{*l,h \top} & \mathbf{K}^{l,h \top} \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{v}^{*l,h} \\ \mathbf{V}^{l,h} \end{bmatrix}$                                                    | 72.76                              | 0.04                               | 3.72       |
| Softmax $\left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \begin{bmatrix} \mathbf{k}^{*l,h \top} & \mathbf{K}^{l,h \top} \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$                                                           | 73.34                              | 0.00                               | 3.72       |
| Softmax $\left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h} + \mathbf{v}^{*l,h}$                                                                                                                                          | -                                  | 17.53                              | 3.73       |

# Effects of Attention Biases

- Key biases can significantly mitigate massive activations, as no need to develop new biases



# Effects of Attention Biases

- Value bias needs to be close to zero

| $v^{*l,h}$                 | <b>0</b> | $v'$  | $5v'$ | $20v'$ | $v''$ | $5v''$ | $20v''$ |
|----------------------------|----------|-------|-------|--------|-------|--------|---------|
| Sink $_{*}^{\epsilon}$ (%) | 73.34    | 70.03 | 44.43 | 1.51   | 69.74 | 27.99  | 0.00    |
| Sink $_{1}^{\epsilon}$ (%) | 0.00     | 0.06  | 3.71  | 25.88  | 2.15  | 5.93   | 11.21   |
| valid loss                 | 3.72     | 3.72  | 3.72  | 3.71   | 3.72  | 3.72   | 3.73    |

$$v' = [1, 0, 0, \dots, 0]$$

$$v'' = [1, 1, 1, \dots, 1] / \sqrt{d_h}$$

# Effects of Attention Biases

- Key bias is low-rank

| $d_a$                        | 1     | 2     | 4     | 8     | 16    | 32    | 64    |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|
| $\text{Sink}_*^\epsilon(\%)$ | 32.18 | 30.88 | 30.94 | 31.39 | 23.30 | 51.23 | 69.19 |
| $\text{Sink}_1^\epsilon(\%)$ | 4.74  | 4.96  | 4.39  | 4.54  | 2.19  | 1.94  | 0.04  |
| valid loss                   | 3.73  | 3.72  | 3.72  | 3.73  | 3.73  | 3.73  | 3.72  |

# Comparing different Attention Biases

- Learnable key biases, zero value biases

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \begin{bmatrix} \mathbf{k}^{*l,h}^\top & \mathbf{K}^{l,h}^\top \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$$

- Softmax off-by-one

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \begin{bmatrix} \mathbf{0}^{*l,h}^\top & \mathbf{Q}^{l,h} \mathbf{K}^{l,h}^\top \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$$

- Learnable attention score biases (single number for each head, layer)

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \begin{bmatrix} \mathbf{b}^{*l,h}^\top & \mathbf{Q}^{l,h} \mathbf{K}^{l,h}^\top \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$$

$$\mathbf{b}^{*l,h} = b^{*l,h}[1, 1, 1, \dots, 1]$$

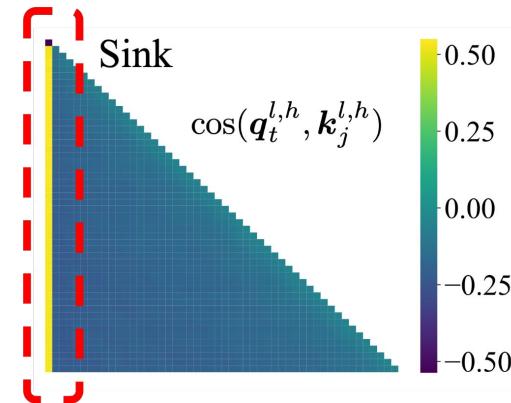
# Comparing different Attention Biases

- Softmax off-by-one: with any query, the cosine similarity is zero

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \begin{bmatrix} \mathbf{0}^{*l,h \top} & \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$$

- Original format:
  - Zero may already be enough

$$(\text{softmax}_1(x))_i = \frac{\exp(x_i)}{1 + \sum_j \exp(x_j)}$$



# Effects of Attention Biases

The learnable key bias and **zero** value bias experiments show that:

- Large attention score does not mean important in semantic
- Sink token save extra attention, adjusts the dependence among tokens

But why LLMs need such a mechanism?

# Effects of Normalization in Softmax Attention

Whether this is due to the normalization in Softmax attention?

$$\begin{aligned}\mathbf{v}_i^\dagger &= \sum_{j=1}^i \frac{\alpha \text{sim}(\varphi(\mathbf{q}_i), \varphi(\mathbf{k}_j))}{\sum_{j'=1}^i \text{sim}(\varphi(\mathbf{q}_i), \varphi(\mathbf{k}_{j'}))} \mathbf{v}_j = \sum_{j=1}^i \frac{\text{sim}(\varphi(\mathbf{q}_i), \varphi(\mathbf{k}_j))}{\sum_{j'=1}^i \text{sim}(\varphi(\mathbf{q}_i), \varphi(\mathbf{k}_{j'}))} \mathbf{h}_j(\alpha \mathbf{W}_V), \\ \mathbf{o}'_i &= \text{Concat}_{h=1}^H (\mathbf{v}_i^{'h}) \mathbf{W}_O.\end{aligned}$$

Scaling the normalization  $\mathbf{Z}_i \rightarrow \mathbf{Z}_i/\alpha$ , equivalent to scaling weight matrices, and then scaling the LR, mitigates attention sink

$$\begin{aligned}\mathbf{W}_O^{s+1} &= \mathbf{W}_O^s - \eta \nabla_{\mathbf{W}_O^s} \mathcal{L}(\alpha \mathbf{W}_O^s) \\ &= \mathbf{W}_O^s - \alpha \eta \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W})|_{\mathbf{W}=\alpha \mathbf{W}_O^s},\end{aligned}$$

$$\begin{aligned}\hat{\mathbf{W}}_O^{s+1} &= \hat{\mathbf{W}}_O^s - \eta' \nabla_{\hat{\mathbf{W}}_O^s} \mathcal{L}(\hat{\mathbf{W}}_O^s) \\ &= \alpha \mathbf{W}_O^s - \eta' \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W})|_{\mathbf{W}=\alpha \mathbf{W}_O^s},\end{aligned}$$

# Effects of Normalization in Softmax Attention

Power of sum to one: may mitigate attention sink but does not prevent, sensitive to LR, large LR may incentivize attention sink

$$\mathbf{v}_i^\dagger = \frac{\sum_{j=1}^i \text{sim}(\varphi(\mathbf{q}_i), \varphi(\mathbf{k}_j)) \mathbf{v}_j}{\left(\sum_{j'=1}^i \text{sim}(\varphi(\mathbf{q}_i), \varphi(\mathbf{k}_{j'}))^p\right)^{\frac{1}{p}}}$$
$$\mathbf{v}_i^\dagger = \sum_{j=1}^i \left( \frac{\exp\left(\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}/p}\right)}{\sum_{j'=1}^i \exp\left(\frac{\mathbf{q}_i \mathbf{k}_{j'}^\top}{\sqrt{d_h}/p}\right)} \right)^{\frac{1}{p}} \mathbf{v}_j$$

# Effects of Normalization in Softmax Attention

- Removing the normalization in Softmax attention

Using sigmoid attention (exponential kernel in Softmax tends to explode)

$$\text{Sigmoid} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h}$$

Or ELU plus one attention

No normalization -> No attention sink; add back -> attention sink

# Effects of Normalization in Softmax Attention

## Other attention variants

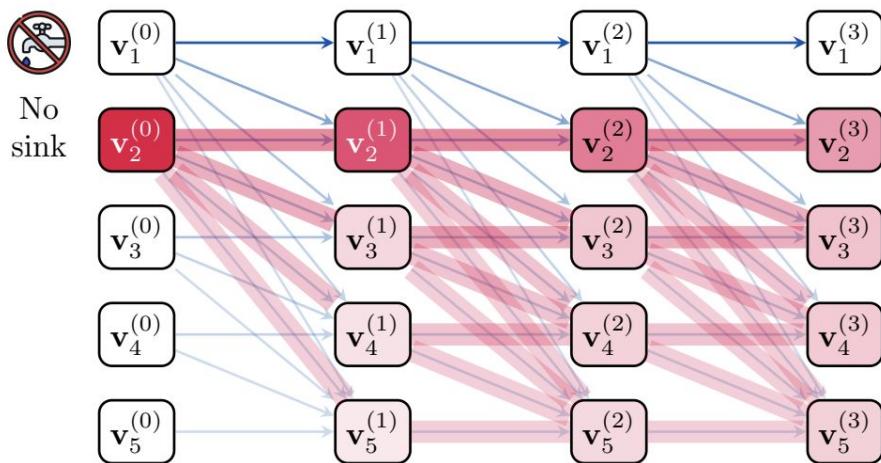
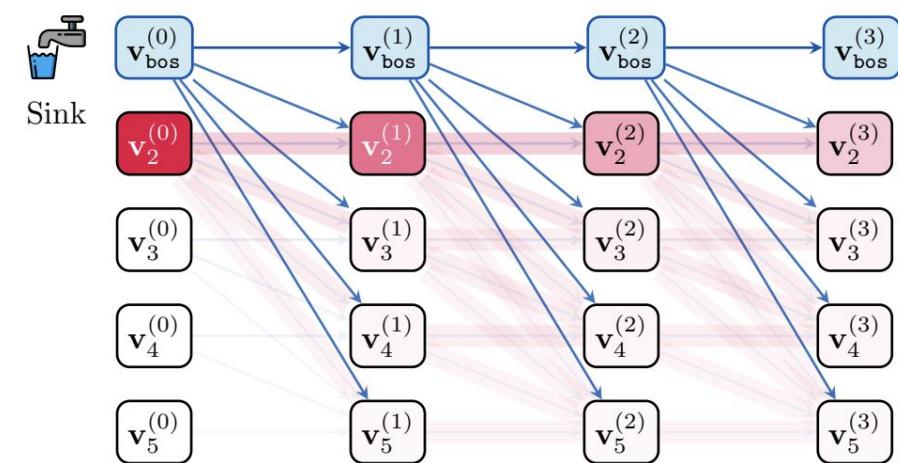
| $\text{sim}(\varphi(\mathbf{q}_i), \varphi(\mathbf{k}_j))$                             | $\mathbf{Z}_i$                                                                                          | $\text{Sink}_1^\epsilon(\%)$ | valid loss |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------|------------|
| $\exp\left(\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}}\right)$                   | $\sum_{j'=1}^i \exp\left(\frac{\mathbf{q}_i \mathbf{k}_{j'}^\top}{\sqrt{d_h}}\right)$                   | 18.18                        | 3.73       |
| $\text{sigmoid}\left(\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}}\right)$         | 1                                                                                                       | 0.44*                        | 3.70       |
| $\text{sigmoid}\left(\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}}\right)$         | $\sum_{j'=1}^i \text{sigmoid}\left(\frac{\mathbf{q}_i \mathbf{k}_{j'}^\top}{\sqrt{d_h}}\right)$         | 30.24                        | 3.74       |
| $\text{elu}\left(\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}}\right) + 1$         | 1                                                                                                       | 0.80*                        | 3.69       |
| $\text{elu}\left(\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}}\right) + 1$         | $\sum_{j'=1}^i \text{elu}\left(\frac{\mathbf{q}_i \mathbf{k}_{j'}^\top}{\sqrt{d_h}}\right) + 1$         | -                            | -          |
| $\frac{(\text{elu}(\mathbf{q}_i) + 1)(\text{elu}(\mathbf{k}_j) + 1)^\top}{\sqrt{d_h}}$ | $\sum_{j'=1}^i \frac{(\text{elu}(\mathbf{q}_i) + 1)(\text{elu}(\mathbf{k}_{j'}) + 1)^\top}{\sqrt{d_h}}$ | 53.65*                       | 4.19       |
| $\frac{(\text{elu}(\mathbf{q}_i) + 1)(\text{elu}(\mathbf{k}_j) + 1)^\top}{\sqrt{d_h}}$ | 1                                                                                                       | -                            | -          |
| $\mathbf{q}_i \mathbf{k}_j^\top$                                                       | $\max\left(\left \sum_{j'=1}^i \mathbf{q}_i \mathbf{k}_{j'}^\top\right _1\right)$                       |                              |            |

I am attempting to answer ...

- Mechanism understanding of Attention Sink?
- When Attention Sink Emerges in LLMs?
- Why LLMs need Attention Sink?
- Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?

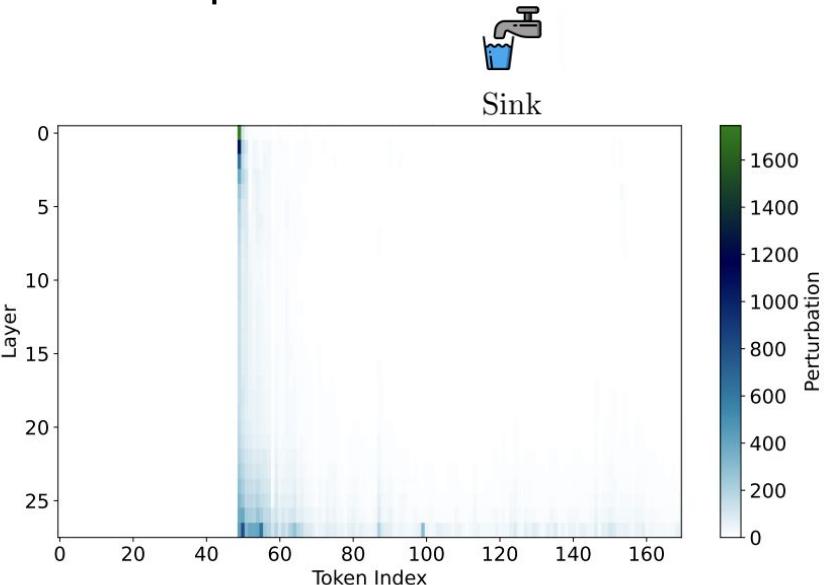
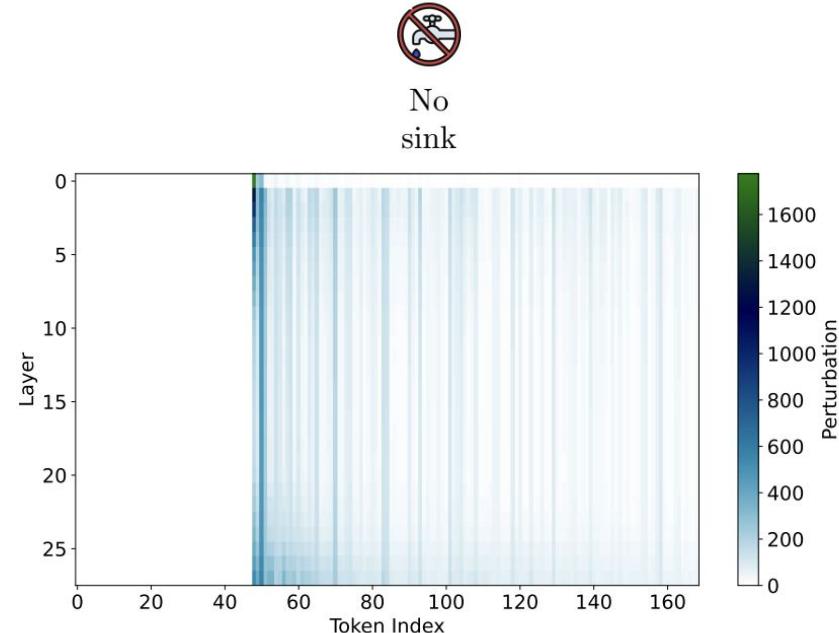
# LLMs need attention sink to prevent over-mixing

- Attention blocks try to mix representations
- Attention sink serves as a mechanism to prevent over-mixing (see the paper for theory, longer context needs stronger mechanism)



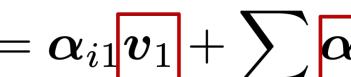
# LLMs need attention sink to prevent over-mixing

With attention sink, perturbation on one token (“greatest”->“best”) won’t change token representations a lot

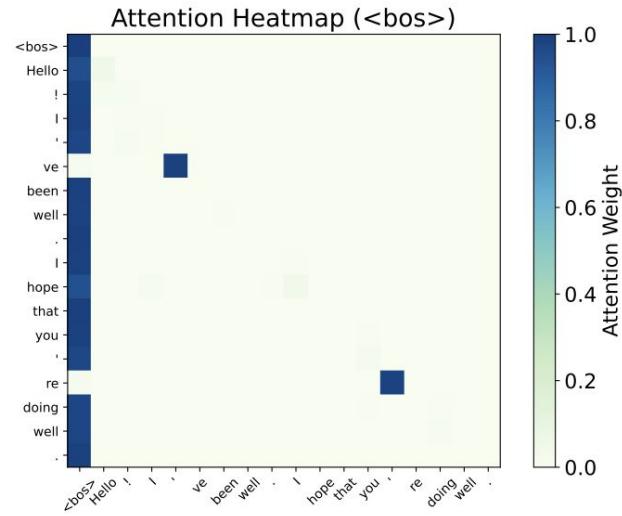


# Attention sink implements “no-op”

- Attention sink approximates “no-op”: either sharply to attend one important token or attend to the first token
- From the representation mixing perspective, LLMs need “no-op” to prevent over-mixing

$$\mathbf{v}_i^\dagger = \sum_{j=1}^i \alpha_{ij} \mathbf{v}_j = \alpha_{i1} \boxed{\mathbf{v}_1} + \sum_{j \neq 1}^i \boxed{\alpha_{ij}} \mathbf{v}_j$$


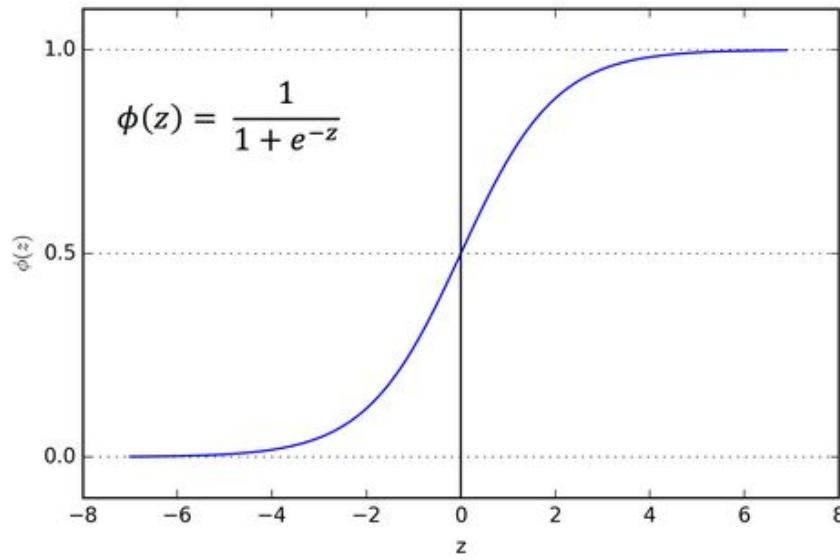
Small



# Interpreting attention variants using “no-op”

Sigmoid attention allows approximate zero attention

$$\text{Sigmoid} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h}$$



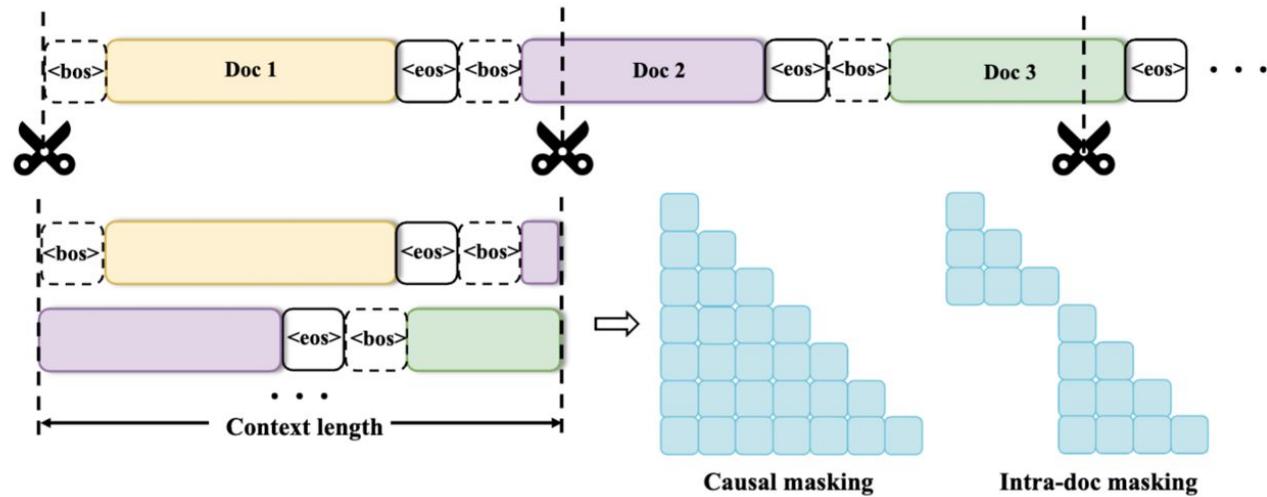
# Interpreting attention variants using “no-op”

The following linear attention could have all zero attention scores

| $\text{sim}(\varphi(\mathbf{q}_i), \varphi(\mathbf{k}_j))$                 | $Z_i$                                                                                                                        | $\text{Sink}_1^\epsilon(\%)$ | valid loss |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|
| $\exp\left(\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}}\right)$       | $\sum_{j'=1}^i \exp\left(\frac{\mathbf{q}_i \mathbf{k}_{j'}^\top}{\sqrt{d_h}}\right)$                                        | 18.18                        | 3.73       |
| $\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}}$                        | $\max\left(\left \sum_{j'=1}^i \frac{\mathbf{q}_i \mathbf{k}_{j'}^\top}{\sqrt{d_h}}\right , 1\right)$                        | -                            | -          |
| $\frac{\mathbf{q}_i \mathbf{k}_j^\top}{\sqrt{d_h}}$                        | 1                                                                                                                            | 0.00*                        | 3.99       |
| $\frac{\text{mlp}(\mathbf{q}_i)\text{mlp}(\mathbf{k}_j)^\top}{\sqrt{d_h}}$ | $\max\left(\left \sum_{j'=1}^i \frac{\text{mlp}(\mathbf{q}_i)\text{mlp}(\mathbf{k}_{j'})^\top}{\sqrt{d_h}}\right , 1\right)$ | 0.19*                        | 3.85       |
| $\frac{\text{mlp}(\mathbf{q}_i)\text{mlp}(\mathbf{k}_j)^\top}{\sqrt{d_h}}$ | 1                                                                                                                            | 0.74*                        | 3.91       |

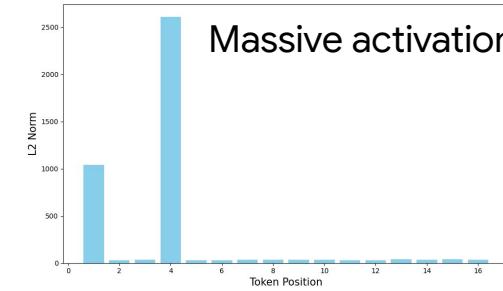
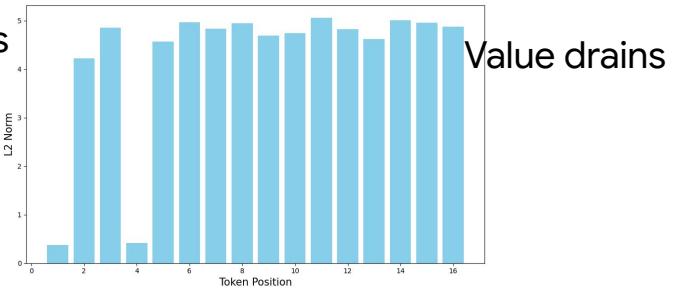
# When Attention Sink Attaches to <BOS>

Data packing (fixed <BOS> in the first position will have similar behavior as Gemma)

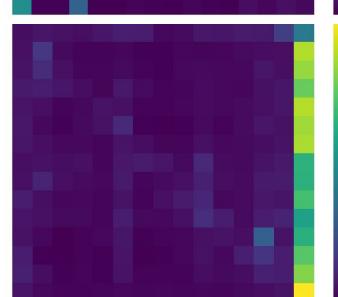
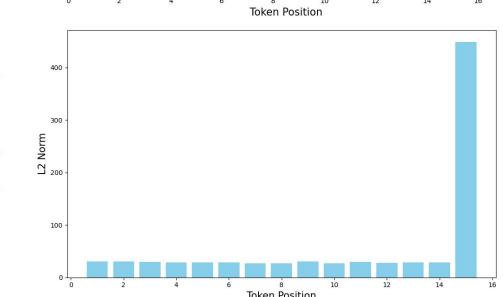
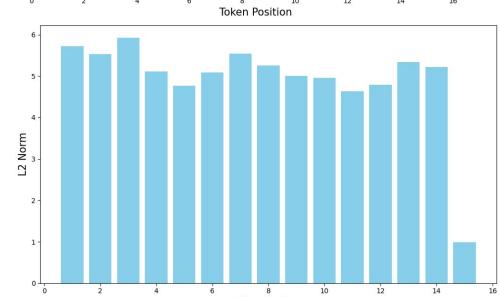


# Attention sink / “No-op” widely exists in Transformer family

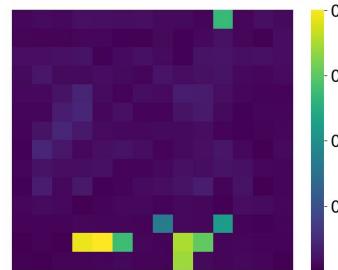
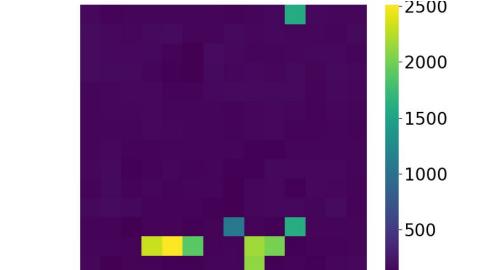
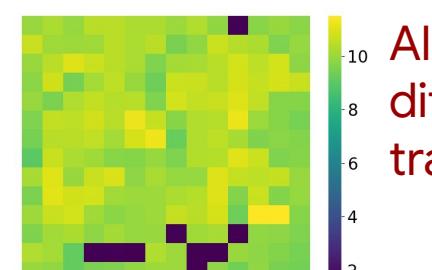
LLaMA



BERT



ViT



Also appear in  
diffusion  
transformers

I am attempting to answer ...

- Mechanism understanding of Attention Sink?
- When Attention Sink Emerges in LLMs?
- Why LLMs need Attention Sink?
- Why GPT-OSS and Qwen3-Next consider Attention Sink in the Model Design?

# GPT-OSS adopts Attention Biases

- Learnable key biases, zero value biases

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \begin{bmatrix} \mathbf{k}^{*l,h}^\top & \mathbf{K}^{l,h}^\top \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$$

- Softmax off-by-one

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \begin{bmatrix} \mathbf{0}^{*l,h}^\top & \mathbf{Q}^{l,h} \mathbf{K}^{l,h}^\top \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$$

- Learnable attention score biases (single number for each head, layer)

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \begin{bmatrix} \mathbf{b}^{*l,h}^\top & \mathbf{Q}^{l,h} \mathbf{K}^{l,h}^\top \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$$

$$\mathbf{b}^{*l,h} = b^{*l,h}[1, 1, 1, \dots, 1]$$

# GPT-OSS adopts Attention Biases

The first token does not develop strong attention sink, thus mitigating massive activations/outliers

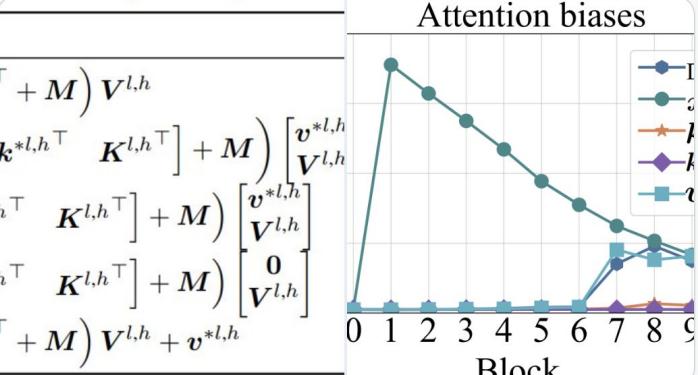
Benefits 1: facilitate quantization, pre-training stability

Pinned

Xiangming Gu  @gu\_xiangming · Aug 6

I noticed that [@OpenAI](#) added learnable bias to attention logits before softmax. After softmax, they deleted the bias. This is similar to what I have done in my ICLR2025 paper: [openreview.net/forum?id=78Nn4....](https://openreview.net/forum?id=78Nn4....)

I used learnable key bias and set corresponding value bias zero. In this way, [Show more](#)



| Block | I   | J    | H | K | V |
|-------|-----|------|---|---|---|
| 0     | 0   | 0    | 0 | 0 | 0 |
| 1     | 0   | 1    | 0 | 0 | 0 |
| 2     | 0.1 | 0.8  | 0 | 0 | 0 |
| 3     | 0.2 | 0.6  | 0 | 0 | 0 |
| 4     | 0.3 | 0.4  | 0 | 0 | 0 |
| 5     | 0.4 | 0.2  | 0 | 0 | 0 |
| 6     | 0.5 | 0.1  | 0 | 0 | 0 |
| 7     | 0.6 | 0.05 | 0 | 0 | 0 |
| 8     | 0.7 | 0.02 | 0 | 0 | 0 |
| 9     | 0.8 | 0.01 | 0 | 0 | 0 |

OpenAI  @OpenAI · Aug 6

Our open models are here.  
Both of them.

[openai.com/open-models](https://openai.com/open-models)

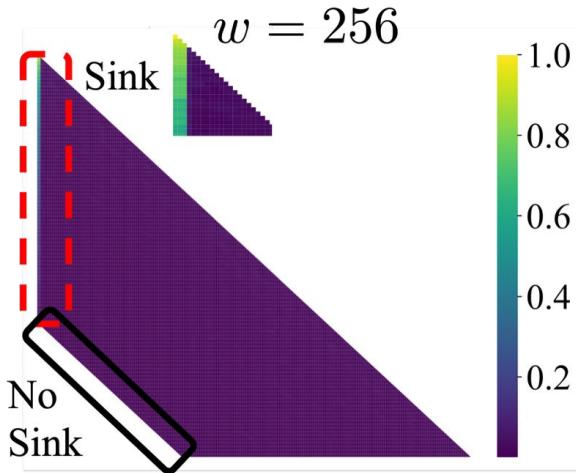
22 185 1.7K 276K

# GPT-OSS adopts Attention Biases

- Attention sink only happens in **absolute** first token, not **relative** first token
- Tokens beyond window size have no sinks to attend, possible over-mixing

$$\text{Softmax} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \begin{bmatrix} \mathbf{k}^{*l,h}^\top & \mathbf{K}^{l,h}^\top \end{bmatrix} + \mathbf{M} \right) \begin{bmatrix} \mathbf{0} \\ \mathbf{V}^{l,h} \end{bmatrix}$$

- Facilitate long context, especially in LLMs with alternative shifted window / full attention



# Xiaomi MiMo-V2-Flash adopts Attention Biases

Attention biases work both on language modeling and long context scenarios

General LLM  
benchmarks

Long-context  
benchmarks

Reasoning  
benchmarks

| Model                             | MMLU        | BBH         | TriviaQA    | GSM8K       | MATH        | CMMLU       | MBPP        |
|-----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| All GA                            | 57.3        | 54.7        | 53.2        | 34.2        | 9.5         | 50.3        | 54.7        |
| Hybrid SWA( $W = 128$ , w/o sink) | 54.9        | 52.4        | 52.8        | 36.9        | 8.9         | -           | -           |
| Hybrid SWA( $W = 128$ , w/ sink)  | <b>58.3</b> | <b>56.1</b> | 53.7        | 36.9        | <b>10.3</b> | <b>53.3</b> | <b>56.3</b> |
| Hybrid SWA( $W = 512$ , w/ sink)  | <b>58.3</b> | 54.9        | <b>54.9</b> | <b>37.9</b> | 10.0        | 52.3        | 53.2        |

| Model                            | GSM-Infinite | NoLiMa      | RULER-32k   | MRCR        |
|----------------------------------|--------------|-------------|-------------|-------------|
| All GA                           | 12.3         | 49.7        | <b>89.4</b> | 32.5        |
| Hybrid SWA( $W = 128$ , w/ sink) | <b>17.3</b>  | <b>51.2</b> | <b>89.4</b> | <b>34.4</b> |
| Hybrid SWA( $W = 512$ , w/ sink) | 17.2         | 38.5        | 84.7        | 19.6        |

| Model                            | AIME24/25   | LiveCodebench | GPQA-Diamond | Average     |
|----------------------------------|-------------|---------------|--------------|-------------|
| All GA                           | 45.5        | 40.0          | 41.7         | 42.4        |
| Hybrid SWA( $W = 128$ , w/ sink) | <b>47.1</b> | <b>43.9</b>   | <b>48.1</b>  | <b>46.3</b> |

# Qwen3-Next adopts Gated Attention

$$\text{Sigmoid}(\mathbf{G}^{l,h}) \odot \left[ \text{Softmax} \left( \frac{1}{\sqrt{d_h}} \mathbf{Q}^{l,h} \mathbf{K}^{l,h \top} + \mathbf{M} \right) \mathbf{V}^{l,h} \right]$$

Transformations of inputs



**Sigmoid gate** allows “no-op”, no need to only rely on attention sink for “no-op”  No attention sink, massive activations, better long context, pre-training stability

Google DeepMind



Thank you for listening!